Explicit scheme for the numerical solution of unsaturated flow in heterogeneous media under shallow water table conditions.
DOI:
https://doi.org/10.35305/curiham.v27i.169Keywords:
Explicit scheme, Unsaturated flow, Plain, Shallow water tableAbstract
An explicit 4-cell (4C) numerical scheme is proposed for the integration of the flow equations in the unsaturated zone designed for plain areas with shallow water tables. The scheme contemplates a weighting coefficient to define the representative unsaturated hydraulic conductivity between adjacent cells and considers the heterogeneity of each edaphic horizon. The 4C scheme is compared with estimates made by HYDRUS-1D in two sets of modeled tests, one with surface saturation for 10 days and the other with rainfall series for 96 days. The numerical tests were performed for 14 types of soil associations characteristic of the study area (A° del Azul, Bs. As.) and 6 phreatic depths (between 300 and 50 cm). For the first trial, the response of the scheme is considered acceptable with percentage differences of about 19%. In the second, the proposed scheme estimated satisfactorily the phreatic recharge with percentage differences of 1% between both schemes. In addition, it showed a very good adjustment in the evolution of moisture contents of each stratum. These results validate the proposed simplified scheme allowing a fast response in terms of computational time.
Downloads
Metrics
References
Caamaño Nelli, G. y Zimmermann, E. (1990). Tipología de los Sistemas Hidrológicos Superficiales. XVI Congreso Nacional Asoc. Arg. Geofis. Y Geod.. Bahía Blanca. Argentina.
Entraigas, I., Vercelli, N., Fajardo, L. (2019). Plant communities along preferential superficial water flow paths across a floodplain landscape. Ecohydrology, 12(6), e2124. https://doi.org/10.1002/eco.2124
Fertonani, M., y Prendes, H. (1983) Hidrología en áreas de llanura. Aspectos Conceptuales Teóricos y Metodológicos. Coloquio de Hidrología de Grandes Llanuras. Olavarría.Argentina.,1, p 119-156.
Kovacs, G. (1983). General Principles of Flatlands Hydrology. Coloquio de Hidrología de Grandes Llanuras. Olavarría. Argentina, p 297-357.
Kruse, E. y Zimmermann, E. (2002). Hidrogeología de grandes llanuras. Particularidades en la llanura pampeana (Argentina). In: Workshop publication on Groundwater and Human development (pp. 2025-2038).
Méndez Zacarías J. y Zimmermann E. (2011). Uso De Sistemas De Información Geográfica Para Parametrización De Modelos De Simulación Hidrológica En Llanuras. XXIII Congreso Nacional del Agua y VI Simposio de Recursos Hídricos del Cono Sur. Resistencia. Argentina.
Saxton, K., Rawls,W., Romberger, J., and Papendick R. (1986). Estimating generalized soil -water characteristics from texture. Geoderma, (102), 275 -297.
Simunek, J., Huang K., y Van Genuchten, M. (1998). The HYDRUS code for simulating the one dimensional movement of water, heat, and multiple solutes in variably saturated media. Version 6.0, Research Report No. 144, U.S. Salinity Laboratory, USDA, ARS, Riverside, California, 164pp.
Simunek, J., Van Genuchten, M. T., & Sejna, M. (2005). The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. University of California-Riverside Research Reports, 3, 1-240.
Tricart, J. (1983) L'Hydrologie des Grans Plains, Quelques Reflexions Methodologiques. Coloquio de Hidrología de las grandes Llanuras. Olavarría, Argentina, 2, p 1191-1193.
Tomasella, J. y Hodnett, M. (1998). Estimating soil water retention characteristics from limited data in Brazilian Amazonia. Soil science, 163(3), 190-202.
Vereecken, H., J. Maes, J. Feyen, and P. Darius (1989). Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Science. 148, 389-403.
Wösten, J, A. Lilly, A. Nemes, and C. Le Bas (1999). Development and use of a database of hydraulic properties of European soils. Geoderma 90, 69-185.
Zimmermann E. y Riccardi , G. (2000) Modelo de simulación hidrológica superficial para áreas de llanura. XIX Congreso Latinoamericano de Hidráulica. Córdoba. Argentina.
Zimmermann, E. y Riccardi, G. (2003). Modelo hidrológico superficial y subterráneo desarrollado para la simulación de sistemas de llanura. 1. Aplicación en el sistema Ludueña (Santa Fe, Argentina). Boletín Geológico y Minero, 114(2), 147-158.
Zimmermann, E. y Basile, P. (2008). Uso de funciones de pedotransferencia para la estimación de parámetros hidráulicos en suelos limosos (llanura Argentina). Boletín del Instituto Geológico Minero de España, 119(1), 71-80.
Zimmermann E. y J. Mecca (2010). Aplicación del modelo SHALL en los sistemas hidrológicos de las lagunas don Tomás y bajo Giuliani (La Pampa, Argentina) para la evaluación de impactos provocados por efluentes y escurrimientos. I Congreso Internacional de Hidrología de Llanuras. Azul, Buenos Aires, Argentina .
Zimmermann, E. y Basile, P. (2011). Estimación de parámetros hidráulicos en suelos limosos mediante diferentes funciones de pedotransferencia. Tecnología y ciencias del agua, 2(1), 99-116.
Zimmermann, E. y Basile, P. (2014). Metodología de agregación para estimar conductividades hidráulicas en suelos heterogéneos insaturados. Tecnología y ciencias del agua, 5(4), 39-55.
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.