El caudal base como reflejo de los procesos hidrológicos a escala cuenca: un estudio de caso en cuencas hidrológicas de llanura

Autores/as

  • Romina Marcovecchio Instituto de Hidrología de Llanuras "Dr. Eduardo Usunoff" y Consejo Nacional de Investigaciones Científicas y Técnicas. Tandil; Argentina. https://orcid.org/0000-0001-7470-9117
  • Sebastián Dietrich Instituto de Hidrología de Llanuras "Dr. Eduardo Usunoff" y Consejo Nacional de Investigaciones Científicas y Técnicas. Azul; Argentina. https://orcid.org/0000-0001-7937-4061
  • María Soledad Gualde Instituto de Hidrología de Llanuras "Dr. Eduardo Usunoff" y Consejo Nacional de Investigaciones Científicas y Técnicas. Azul; Argentina. https://orcid.org/0000-0001-5348-9047
  • María Emilia Zabala Instituto de Hidrología de Llanuras "Dr. Eduardo Usunoff" y Consejo Nacional de Investigaciones Científicas y Técnicas. Azul; Argentina. https://orcid.org/0000-0002-9974-3861

DOI:

https://doi.org/10.35305/curiham.ed24.e06

Palabras clave:

Caudal base, BFI, Acuífero Pampeano, Descargas, Variabilidad climática

Resumen

El caudal base es un componente clave del ciclo hidrológico, ya que refleja procesos hidrológicos a escala de cuenca. En la cuenca del arroyo del Azul, un sistema de llanura caracterizado por movimientos verticales y almacenamiento predominante sobre el escurrimiento superficial, se ha estudiado el caudal base, pero no su relación con la variabilidad climática. Este trabajo identifica el caudal base en la zona media del arroyo y analiza sus variaciones estacionales en función de la estacionalidad de las precipitaciones, moduladas por el Sistema Monzónico Sudamericano (SMSA). Se utilizó un filtro digital recursivo para identificar el caudal base, cuyos resultados se analizaron considerando la relación cuadrática propuesta por Varni et al. (2019) entre el caudal base y el nivel freático. Los resultados indican que el caudal base representa entre el 60-90% del caudal total durante la fase activa del SMSA (octubre-febrero) y entre el 40-70% en la fase inactiva (marzo-septiembre). Además, la metodología empleada otorga un sentido físico a los filtros digitales al vincularlos con la variabilidad del nivel freático. Este análisis proporciona una visión integral de la dinámica estacional del caudal base y su relación con el ciclo hidrológico y climático.

 

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Alcaraz, E., Basaldúa, A., Quiroz‐Londoño, O. M., Dapeña, C., Ibarra, E., Copia, L. y Martínez, D. (2024). Using 3H as a tracer to study streamflow components in large plain catchments on temperate climate. Hydrological Processes, 38(8), e15264. https://doi.org/10.1002/hyp.15264

Batista, L. V., Gastmans, D., Sánchez‐Murillo, R., Saeta Farinha, B., Rodrigues dos Santos, S. M. y Kiang, C. H. (2018). Groundwater and surface water connectivity within the recharge area of Guarani aquifer system during El Niño 2014–2016. Hydrological Processes, 32(16), 2483-2495. https://doi.org/10.1002/hyp.13211

Brutsaert, W. y Nieber, J. L. (1977). Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resources Research, 13(3), 637-643. https://doi.org/10.1029/WR013i003p00637

Chapman, T. G. (1991). Comment on “Evaluation of automated techniques for base flow and recession analyses” by R. J. Nathan and T. A. McMahon. Water Resources Research, 27(7), 1783-1784. https://doi.org/10.1029/91WR01007

Chapman, T. G. y Maxwell, A. I. (enero, 1996). Baseflow separation-comparison of numerical methods with tracer experiments (Paper de Conferencia). Hydrology and Water Resources Symposium 1996: Water and the Environment; preprints of papers, 1, 1 (pp. 539-545). ISBN: 0858256495. Barton, ACT: Institution of Engineers, Australia.

Eckhardt, K. (2005). How to construct recursive digital filters for baseflow separation. Hydrological Processes, 19(2), pp. 507-515. https://doi.org/10.1002/hyp.5675

Eckhardt, K. (2008). A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. Journal of Hydrology, 352(1–2), pp. 168–173. https://doi.org/10.1016/j.jhydrol.2008.01.005

Ferreira, G. W. S. y Reboita, M. S. (2022). A new look into the South America precipitation regimes: observation and forecast. Atmosphere, 13(6), 873. https://doi.org/10.3390/atmos13060873

Gonzales, A. L., Nonner, J., Heijkers, J. y Uhlenbrook, S. (2009). Comparison of different base flow separation methods in a lowland catchment. Hydrology and Earth System Sciences, 13(11), 2055-2068. https://doi.org/10.5194/hess-13-2055-2009

Gualde, M. S., Arrouy, M. J., Zárate, M., Dietrich, S. y Gregorini, C. A. (2024). The missing sedimentological section linking the Neogene and Quaternary of the Tandilia system and the Salado basin, Buenos Aires province, Argentina. Journal of South American Earth Sciences, 136, 104833. https://doi.org/10.1016/j.jsames.2024.104833

Guevara Ochoa, C., Medina Sierra, A., Vives, L., Zimmermann, E. y Bailey, R. (2020). Spatio‐temporal patterns of the interaction between groundwater and surface water in plains. Hydrological Processes, 34(6), 1371-1392. https://doi.org/10.1002/hyp.13615

Guisiano, P. A., Santoni, S., Huneau, F., Mattei, A. y Garel, E. (2024). Using natural tracers and calibrated analytical filter to highlight baseflow contribution to mountainous Mediterranean rivers in a context of climate change. Journal of Hydrology, 641, 131842. https://doi.org/10.1016/j.jhydrol.2024.131842

Gustard, A., Bullock, A. y Dixon, J. M. (1992). Low flow estimation in the United Kingdom. IH Report No. 108. Published by the Institute of Hydrology. ISBN 0 948540 45 1. Wallingford, UK. https://nora.nerc.ac.uk/id/eprint/6050/1/IH_108.pdf

Lyne, V. y Hollick, M. (septiembre, 1979). Stochastic time-variable rainfall-runoff modelling (Paper de Conferencia). Institute of engineers Australia National Conference, Vol. 79, No. 10, pp. 89-93. Barton, Australia: Institute of Engineers Australia. https://www.researchgate.net/profile/Vincent-Lyne/publication/272491803_Stochastic_Time-Variable_Rainfall-Runoff_Modeling/links/54f45fb40cf299c8d9e6e6c1/Stochastic-Time-Variable-Rainfall-Runoff-Modeling.pdf

Marcovecchio, R. y Varni, M. (2020). Una aproximación a las descargas por evapotranspiración del acuífero freático pampeano en la cuenca del Arroyo del Azul (llanura pampeana). Cuadernos del CURIHAM, 26, 13-19. https://doi.org/10.35305/curiham.v26i0.149

McMahon, T. A. y Nathan, R. J. (2021). Baseflow and transmission loss: A review. Wiley Interdisciplinary Reviews: WAREs Water, 8(4), e1527. https://doi.org/10.1002/wat2.1527

McMillan, H. (2022). A taxonomy of hydrological processes and watershed function. Hydrological Processes, 36(3), e14537. https://doi.org/10.1002/hyp.14537

Nathan, R. J. y McMahon, T. A. (1990). Evaluation of automated techniques for base flow and recession analyses. Water Resources Research, 26(7), pp. 1465-1473. https://doi.org/10.1029/WR026i007p01465

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... y Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825-2830. https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf

Raia, A. y Cavalcanti, I. F. A. (2008). The life cycle of the South American Monsoon system. Journal of Climate, 21(23), pp. 6227-6246. https://doi.org/10.1175/2008JCLI2249.1

Reback, J., McKinney, W., Jbrockmendel, Van den Bossche, J., Augspurger, T., Cloud, P., … y Winkel, M. (2020). pandas-dev/pandas: Pandas 1.0.5. Zenodo. https://zenodo.org/records/3898987

Rodríguez, L. B., Vionnet, C. A., Parkin, G. y Younger, P. L. (2000). Aplicación de un método automático para la separación de las componentes del hidrograma [Conference Proceedings (inc. Abstract)]. XIX Congreso Latinoamericano de Hidráulica. Córdoba, Argentina.

Sala, J., Kruse, E., y Aguglino, R. (1987). Investigación hidrogeológica de la Cuenca del arroyo Azul, Provincia de Buenos Aires. Unpublished technical report. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, 231 p. ISSN 0325-1225. https://digital.cic.gba.gob.ar/handle/11746/2025

Sarochar, R. H., Ciappesoni, H. H., y Ruiz, N. E. (2005). Precipitaciones convectivas y estratiformes en la Pampa Húmeda: una aproximación a su separación y aspectos climatológicos de ambas. Meteorologica, 30(1-2), 77-88. https://www.scielo.org.ar/scielo.php?pid=S1850-468X2005000100005&script=sci_arttext

Singh, K. P. (1969). Theoretical baseflow curves. Journal of the Hydraulics Division, 95(6), 2029-2048. https://doi.org/10.1061/JYCEAJ.0002203

Sophocleous, M. (2002). Interactions between groundwater and surface water: the state of the science. Hydrogeology Journal, 10, 52-67. http://link.springer.com/article/10.1007/s10040-001-0170-8

Teruggi, M. y Kilmurray, J. T. (1975). Relatorio Geología de la provincia de Buenos Aires. VI Congreso Geológico Argentino, Bahía Blanca, Argentina, pp. 55-77.

Usunoff, E., Varni, M., Weinzettel, P. y Rivas, R. (1999). Hidrogeología de grandes llanuras: La pampa húmeda argentina. Boletín geológico y minero, 110(4), 47-62. https://www.researchgate.net/publication/260943068_Hidrogeologia_de_Grandes_Llanuras_la_Pampa_Humeda

van der Ent, R. J., Savenije, H. H. G., Schaefli, B. y Steele-Dunne, S. C. (2010). Origin and fate of atmospheric moisture over continents. Water Resources Research, 46, W09525. https://doi.org/10.1029/2010WR009127

Varni, M. R., Barranquero, R. S. y Zeme, S. (2019). Groundwater and surface water interactions in flat lands: the importance of ecological and flow regulation perspectives. Sustainable Water Resources Management, 5, 1791-1801. https://doi.org/10.1007/s40899-019-00334-1

Varni, M. R., Comas, R., Weinzettel, P. y Dietrich, S. (2013). Application of the water table fluctuation method to characterize groundwater recharge in the Pampa plain, Argentina. Hydrological Sciences Journal, 58(7), 1445-1455. https://doi.org/10.1080/02626667.2013.833663

Varni, M. R. y Usunoff, E. J. (1999). Simulation of regional-scale groundwater flow in the Azul River basin, Buenos Aires Province, Argentina. Hydrogeology Journal, 7, 180-187. https://link.springer.com/article/10.1007/s100400050190

Varni, M. R., Weinzettel, P., Zabala, M. E. y Usunoff, E. (2007). Hidroquímica del acuífero freático del arroyo Azul en base al muestreo de agua a diferentes profundidades. En: E. L. Díaz, J. R. Tomás, M. Santi, M. Paris y O. Dalla Costa (Eds.), V Congreso Argentino de Hidrogeología - 1a ed. (pp. 211-220). Buenos Aires: Asociación Civil Grupo Argentino de la Asociación Internacional de Hidrogeologos AIH. https://www.cohife.org.ar/wp-content/uploads/2024/02/Ficha-76-V-Congreso-Argentino-de-Hidrogeologia.pdf

Varni, M. R., Zeme, S. A., Weinzettel, P. y Dietrich, S. (2014). Relación entre recarga al acuífero freático y otros términos del balance hídrico en Azul, centro de la Provincia de Buenos Aires. En: Memorias del II Congreso Internacional de Hidrología de Llanuras. Santa Fe: Universidad Nacional del Litoral. https://digital.cic.gba.gob.ar/items/901ea210-23e9-4169-bc33-2da8af72a849

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., ... y SciPy 1.0 Contributors (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2

Winter, T. C., Harvey, J. W., Franke, O. L. y Alley, W. M. (1998). Ground water and surface water: A single resource. U.S. Geological Survey Circular: 1139. Denver, Colorado. ISBN 0–607–89339–7. 79 p. http://pubs.usgs.gov/circ/circ1139/pdf/circ1139.pdf

Woessner, W. W. (2000). Stream and fluvial plain ground water interactions: Rescaling hydrogeologic thought. Groundwater, 38(3), 423-429. https://doi.org/10.1111/j.1745-6584.2000.tb00228.x

Zabala, M. E., Gorocito, M., Dietrich, S., Varni, M. R., Murillo, R. S., Manzano, M. y Ceballos, E. (2021). Key hydrological processes in the Del Azul Creek basin, sub-humid Pampean Plain. Science of the Total Environment, 754, 142258. https://doi.org/10.1016/j.scitotenv.2020.142258

Zárate, M. y Rabassa, J. (2005). Geomorfología de la provincia de Buenos Aires. En: Geología y Recursos Minerales de la Provincia de Buenos Aires. Relatorio del XVI Congreso Geológico Argentino, pp. 119-138. Universidad Nacional de La Plata. https://www.researchgate.net/publication/288184736_Geomorfologia_de_la_provincia_de_Buenos_Aires

Descargas

Publicado

2024-12-30

Cómo citar

Marcovecchio, R., Dietrich , S., Gualde, M. S., & Zabala , M. E. (2024). El caudal base como reflejo de los procesos hidrológicos a escala cuenca: un estudio de caso en cuencas hidrológicas de llanura. Cuadernos Del CURIHAM, 06. https://doi.org/10.35305/curiham.ed24.e06