Modelado hidrológico distribuido de la Cuenca del Río Grande (Córdoba, Argentina) en base a datos de precipitación derivados de satélites
DOI:
https://doi.org/10.35305/curiham.v30i.e06Palabras clave:
Modelos Hidrológicos, SWAT , Simulación Continua, Calibración Automática, Sensores RemotosResumen
Se presenta el desarrollo, implementación y calibración de un modelo hidrológico de simulación continua para la cuenca del río Grande (Córdoba, Argentina). Esta cuenca, de un área de 592.7 km², se desarrolla sobre la vertiente oriental de la Sierra de Comechingones. Para una mejor representación de la distribución espacial de la precipitación, se implementó un procedimiento de asimilación de los datos de precipitación derivados de satélites del producto PDIR-Now, en conjunto con siete estaciones pluviométricas. El modelo se implementó a través del programa SWAT+ (Soil and Water Assesment Tool) y la calibración a través del programa SWAT+ Toolbox. Para la descripción de la red de drenaje en SWAT+, se ajustaron las relaciones de la geometría hidráulica en base a observaciones locales. Para la calibración se contó con una sección fluviométrica en la descarga de la cuenca. Se presentan los parámetros de mayor sensibilidad y sus modificaciones producto de la calibración, en conjunto con los estadísticos del ajuste. Se considera que el modelo implementado describe razonablemente el comportamiento hidrológico de la cuenca del río Grande, típica de las cuencas de la región serrana de Córdoba.
Descargas
Métricas
Citas
Agencia Córdoba Ambiente SE e Instituto Nacional de Tecnología Agropecuaria – Estación Experimental Agropecuaria Manfredi (2003). Recursos Naturales de la provincia de Córdoba. Los suelos. Nivel de reconocimiento. Escala 1:50000. Agencia Córdoba D.A.C. y T.S.E.M., Dirección de Ambiente; Instituto Nacional de Tecnología Agropecuaria.
Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan R., Santhi, C., Harmel, R. D., Van Griensven, A., Van Liew, M. W., Kannan, N. y Jha, M. K. (2012). SWAT: Model Use, Calibration, and Validation. Transactions of the ASABE, 55(4), 1491–1508. https://doi.org/10.13031/2013.42256 DOI: https://doi.org/10.13031/2013.42256
Arnold, J. G., Srinivasan, R., Muttiah, R. S. y Williams, J. R. (1998). Large Area Hydrologic Modeling and Assessment Part I: Model Development. Journal of the American Water Resources Association 34(1): 73-89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x DOI: https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
Artan, G., Gadain, H., Smith, J. L., Asante, K., Bandaragoda, C. J. y Verdin, J. P. (2007). Adequacy of satellite derived rainfall data for stream flow modeling. Natural Hazards, 43(2), 167–185. https://doi.org/10.1007/s11069-007-9121-6 DOI: https://doi.org/10.1007/s11069-007-9121-6
Bieger, K., Arnold, J. G., Rathjens, H., White, M. J., Bosch, D. D., Allen, P. M., Volk, M. y Srinivasan, R. (2017). Introduction to SWAT+, a Completely Restructured Version of the Soil and Water Assessment Tool. Journal of the American Water Resources Association (JAWRA) 53(1): 115–130. https://doi.org/10.1111/1752-1688.12482 DOI: https://doi.org/10.1111/1752-1688.12482
Bieger, K., Rathjens, H., Allen, P. M. y Arnold, J. G. (2015). Development and Evaluation of Bankfull Hydraulic Geometry Relationships for the Physiographic Regions of the United States. Journal of the American Water Resources Association (JAWRA), 51(3), 842–858. https://doi.org/10.1111/jawr.12282 DOI: https://doi.org/10.1111/jawr.12282
Bitew, M. M., Gebremichael, M., Ghebremichael, L. T. y Bayissa, Y. A. (2012). Evaluation of High-Resolution Satellite Rainfall Products through Streamflow Simulation in a Hydrological Modeling of a Small Mountainous Watershed in Ethiopia. Journal of Hydrometeorology, 13(1), 338–350. https://doi.org/10.1175/2011JHM1292.1 DOI: https://doi.org/10.1175/2011JHM1292.1
Bjerklie, D. M., Dingman, S. L., Vorosmarty, C. J., Bolster, C. H. y Congalton, R. G. (2003). Evaluating the potential for measuring river discharge from space. Journal of Hydrology, 278(1-4), 17–38. https://doi.org/10.1016/S0022-1694(03)00129-X DOI: https://doi.org/10.1016/S0022-1694(03)00129-X
Bosnero, H. A., Pachecoy, V. L., Carnero, M., Espil, H. O., Lovera, E. F., Reartes, M. A., Tassile, J. L., Obligado, J., Cabido, M., Gonzalez Albarracín, C., Rossetti, E. y Correa, J. J. (s.f.) Hoja 3366-12, Río de los Sauces; Hoja 3366-18, Alpa Corral. Cartas de Suelos de Córdoba. Ministerio de Agricultura, Ganadería y Recursos Renovables - Instituto Nacional de Tecnología Agropecuaria - Universidad Nacional de Córdoba. https://suelos.cba.gov.ar/ALPACORRAL/index.html
Camici, S., Ciabatta, L., Massari, C. y Brocca, L. (2018). How reliable are satellite precipitation estimates for driving hydrological models: A verification study over the Mediterranean area. Journal of Hydrology, 563, 950–961. https://doi.org/10.1016/j.jhydrol.2018.06.067 DOI: https://doi.org/10.1016/j.jhydrol.2018.06.067
Cohen Liechti, T., Matos, J. P., Boillat, J. L. y Schleiss, A. J. (2012). Comparison and evaluation of satellite derived precipitation products for hydrological modeling of the Zambezi River Basin. Hydrology and Earth System Sciences, 16(2), 489-500. https://doi.org/10.5194/hess-16-489-2012 DOI: https://doi.org/10.5194/hess-16-489-2012
Collischonn, B., Collischonn, W. y Tucci, C. E. M. (2008). Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. Journal of Hydrology, 360(1-4), 207–216. https://doi.org/10.1016/j.jhydrol.2008.07.032 DOI: https://doi.org/10.1016/j.jhydrol.2008.07.032
De Vera, A. y Terra, R. (2012). Combining CMORPH and Rain Gauges Observations over the Rio Negro Basin. Journal of Hydrometeorology, 13(6), 1799–1809. https://doi.org/10.1175/JHM-D-12-010.1 DOI: https://doi.org/10.1175/JHM-D-12-010.1
Dos Santos, V., Oliveira, R. A. J., Datok, P., Sauvage, S., Paris, A., Gosset, M. y Sánchez-Pérez, J. M. (2022). Evaluating the performance of multiple satellite-based precipitation products in the Congo River Basin using the SWAT model. Journal of Hydrology: Regional Studies, 42(101168). https://doi.org/10.1016/j.ejrh.2022.101168 DOI: https://doi.org/10.1016/j.ejrh.2022.101168
Food and Agriculture Organization (1974). FAO-UNESCO Soil Map of the World: VO. I, Legend. UNESCO, Paris. https://www.fao.org/4/as360e/as360e.pdf
Gebremichael, M. y Hossain, F. (Eds.). (2009). Satellite rainfall applications for surface hydrology. Springer Science & Business Media. https://link.springer.com/book/10.1007/978-90-481-2915-7 DOI: https://doi.org/10.1007/978-90-481-2915-7
Hong, Y., Hsu, K., Moradkhani, H. y Sorooshian, S. (2006). Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resources Research, 42(8). https://doi.org/10.1029/2005WR004398 DOI: https://doi.org/10.1029/2005WR004398
Khan, S. I., Hong, Y., Vergara, H. J., Gourley, J. J., Brakenridge, G. R., De Groeve, T. y Yong, B. (2012). Microwave Satellite Data for Hydrologic Modeling in Ungauged Basins. IEEE Geoscience and Remote Sensing Letters, 9(4), 663–667. https://doi.org/10.1109/lgrs.2011.2177807 DOI: https://doi.org/10.1109/LGRS.2011.2177807
Le, M.-H., Lakshmi, V., Bolten, J. y Bui, D. D. (2020). Adequacy of Satellite-derived Precipitation Estimate for Hydrological modeling in Vietnam Basins. Journal of Hydrology, 586(124820). https://doi.org/10.1016/j.jhydrol.2020.124820 DOI: https://doi.org/10.1016/j.jhydrol.2020.124820
Leopold, L. B. y Maddock, T. (1953). The hydraulic geometry of stream channels and some physiographic implications, 252. United States Government Printing Office. https://doi.org/10.3133/pp252 DOI: https://doi.org/10.3133/pp252
Maggioni, V. y Massari, C. (2018). On the performance of satellite precipitation products in riverine flood modeling: A review. Journal of Hydrology, 558, 214–224. https://doi.org/10.1016/j.jhydrol.2018.01.039 DOI: https://doi.org/10.1016/j.jhydrol.2018.01.039
Mararakanye, N., Le Roux, J. J. y Franke, A. C. (2020). Using satellite-based weather data as input to SWAT in a data poor catchment. Physics and Chemistry of the Earth, Parts A/B/C, 117(102871). https://doi.org/10.1016/j.pce.2020.102871 DOI: https://doi.org/10.1016/j.pce.2020.102871
Marinho Filho, G. M., Andrade, R. S., Zukowski, J. C. y Magalhães, L. L. (2012). Modelos hidrológicos: conceitos e aplicabilidades. Revista de Ciências Ambientais, 6(2), 35-47. https://revistas.unilasalle.edu.br/index.php/Rbca/article/view/268
Mazzoleni, M., Brandimarte, L. y Amaranto, A. (2019). Evaluating precipitation datasets for large-scale distributed hydrological modelling. Journal of Hydrology, 578(124076). https://doi.org/10.1016/j.jhydrol.2019.124076 DOI: https://doi.org/10.1016/j.jhydrol.2019.124076
Nguyen, P., Ombadi, M., Gorooh, V. A., Shearer, E. J., Sadeghi, M., Sorooshian, S., Hsu, K., Bolvin, D. y Ralph, M. F. (2020). PERSIANN Dynamic Infrared–Rain rate (PDIR-Now): A near-real-time, quasi-global satellite precipitation dataset. Journal of Hydrometeorology, 21(12), 2893-2906. https://doi.org/10.1175/JHM-D-20-0177.1 DOI: https://doi.org/10.1175/JHM-D-20-0177.1
Nguyen, P., Shearer, E. J., Tran, H., Ombadi, M., Hayatbini, N., Palacios, T., Huynh, P., Braithwaite, D., Updegraff, G., Hsu, K., Kuligowski, B., Logan, W. S. y Sorooshian, S. (2019). The CHRS Data Portal, an easily accessible public repository for PERSIANN global satellite precipitation data. Nature Scientific Data, 6(180296). https://doi.org/10.1038/sdata.2018.296 DOI: https://doi.org/10.1038/sdata.2018.296
Odusanya, A. E., Mehdi, B., Schürz, C., Oke, A. O., Awokola, O. S., Awomeso, J. A., Adejuwon, J. O. y Schulz, K. (2019). Multi-site calibration and validation of SWAT with satellite-based evapotranspiration in a data-sparse catchment in southwestern Nigeria. Hydrology and Earth System Sciences, 23(2), 1113-1144. https://doi.org/10.5194/hess-23-1113-2019 DOI: https://doi.org/10.5194/hess-23-1113-2019
Olaya Ferrero, V. (2004). Hidrología computacional y modelos digitales de terreno: teoría, práctica y filosofía de una nueva forma de análisis hidrológico. https://drive.google.com/file/d/1BcsUoJY0gARbWw1JgBf-zHhxA3p6YzJz/view?pli=1
Pachecoy, V. L., Jarsún, B., Espil, H. O., Zamora, E. M. y Tassile, J. L. (s.f.) Hoja 3366-6, Santa Rosa de Calamuchita. Cartas de Suelos de Córdoba. Ministerio de Agricultura, Ganadería y Recursos Renovables - Instituto Nacional de Tecnología Agropecuaria - Universidad Nacional de Córdoba. https://suelos.cba.gov.ar/SANTAROSA/index.html
Pan, M., Li, H. y Wood, E. (2010). Assessing the skill of satellite-based precipitation estimates in hydrologic applications. Water Resources Research, 46(9). https://doi.org/10.1029/2009wr008290 DOI: https://doi.org/10.1029/2009WR008290
Radice, S., Arangue, J., Fagiano, M. R. y Pinotti, L. P. y Cristofolini, E. A. (2012). Análisis petrológico estructural del basamento encajonante del Batolito Cerro Áspero, Sierra de Comechingones, Córdoba. Serie correlación geológica, 28(2), 9-22. https://www.insugeo.org.ar/publicaciones/docs/scg-28-2-01.pdf
Rosenqvist, A., Shimada, M., Ito, N. y Watanabe, M. (2007). ALOS PALSAR: A pathfinder mission for global-scale monitoring of the environment. IEEE Transactions on Geoscience and Remote Sensing, 45(11), 3307-3316. https://doi.org/10.1109/TGRS.2007.901027 DOI: https://doi.org/10.1109/TGRS.2007.901027
Rozante, J. R., Moreira, D. S., de Goncalves, L. G. G. y Vila, D. A. (2010). Combining TRMM and surface observations of precipitation: technique and validation over South America. Weather and forecasting, 25(3), 885-894. https://doi.org/10.1175/2010WAF2222325.1 DOI: https://doi.org/10.1175/2010WAF2222325.1
Saha, S., Moorthi, S., Pan, H., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y., Chuang, H., Juang, H. H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G. y Goldberg, M. (2010). The NCEP Climate Forecast System Reanalysis, Bulletin of the American Meteorological Society, 91(8), 1015-1058. https://doi.org/10.1175/2010BAMS3001.1 DOI: https://doi.org/10.1175/2010BAMS3001.1
Singh, V. P. (Ed.). (1995). Computer models of watershed hydrology. Water Resources Publications.
Tobin, K. J. y Bennett, M. E. (2010). Adjusting Satellite Precipitation Data to Facilitate Hydrologic Modeling. Journal of Hydrometeorology, 11(4), 966–978. https://doi.org/10.1175/2010jhm1206.1 DOI: https://doi.org/10.1175/2010JHM1206.1
Tolson, B. A. y Shoemaker C. A. (2007), Dynamically dimensioned search algorithm for computationally efficient watershed model calibration, Water Resources Research, 43(1). https://doi.org/10.1029/2005WR004723 DOI: https://doi.org/10.1029/2005WR004723
Tong, K., Su, F., Yang, D. y Hao, Z. (2014). Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. Journal of Hydrology, 519(Part A), pp. 423-437. https://doi.org/10.1016/j.jhydrol.2014.07.044 DOI: https://doi.org/10.1016/j.jhydrol.2014.07.044
Tucci, C. E. M. (2005). Modelos hidrológicos. Porto Alegre: Editora da UFRGS.
Van Zyl, J. J. (2001). The Shuttle Radar Topography Mission (SRTM): a breakthrough in remote sensing of topography. Acta astronautica, 48(5-12), 559-565. https://doi.org/10.1016/S0094-5765(01)00020-0 DOI: https://doi.org/10.1016/S0094-5765(01)00020-0
Vieux, B. E. (2004). Distributed Hydrologic Modeling Using GIS. Springer Science & Business Media. https://doi.org/10.1007/1-4020-2460-6 DOI: https://doi.org/10.1007/1-4020-2460-6
Wang, W., Sun, L., Cai, Y., Yi, Y., Yang, W. y Yang, Z. (2020). Evaluation of multi-source precipitation data in a watershed with complex topography based on distributed hydrological modeling. River Research and Applications, 37(8), 1115–1133, https://doi.org/10.1002/rra.3681 DOI: https://doi.org/10.1002/rra.3681
Weber, J. F. y Baigorri Ocampo, S. (2019). Calibración del modelo hidrológico SWAT para una cuenca de la región serrana de Córdoba (Argentina). Aqua-LAC, 11(1), 34-54. https://doi.org/10.29104/phi-aqualac/2019-v11-1-03 DOI: https://doi.org/10.29104/phi-aqualac/2019-v11-1-03
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.