An approach to the evapotranspiration discharges of the pampeano aquifer in the del Azul basin (pampean plain)
DOI:
https://doi.org/10.35305/curiham.v26i0.149Keywords:
groundwater total recharge, groundwater flow discharge, direct discharge by evapotranspirationAbstract
Total monthly recharges, discharges by groundwater flow to discharge zones and losses by direct evapotranspiration from the water table are studied from the daily variation of the water table level in a shallow well in the flat area of the Azul stream basin., located at the Pampean plain. The phreatic levels were recorded using a piezoresistive pressure sensor. The analyzed phreatic aquifer is the Pampeano aquifer. The phreatic levels varied in the period analyzed (2007-2018) between 0.5 and 4 m deep. Direct evapotranspiration discharges from the water table have been found to be a relevant fraction of the total recharge (42%). Direct evapotranspiration discharges are higher in warm months, although the least inter-annual variability occurs in cold and warm months. The greatest variability occurs in autumn and spring. In the period 2007-2018, the average annual total recharge was 252 mm, the average annual loss of recharge to the atmosphere was 105 mm, with a standard deviation of 25 mm and a coefficient of variation of 0.24. This important percentage of the total recharge that is lost by direct evapotranspiration means that the soil water balances must be considered with special attention to estimate the recharge to the aquifer (which does not consider this loss) and explains certain inconsistencies with the groundwater flow models. that required a decrease in recharge in the flattest area to enable the adjustment of the water table levels.
Downloads
Metrics
References
Assouline, S., Tyler, S.W., Selker, J. S., Lunati, I., Higgins, C. W. y Parlange, M. B. (2013). Evaporationfrom a shallow water table: diurnal dynamics of water and heat at the surface of drying sand. Water Resources Research, 49 (7) 4022-4034.
Barua, S., Cartwright, I., Dresel, P. E. y Daly, E.(2020). Using multiple methods to understand groundwater recharge in a semi-arid area, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-143, (in review).
Crosbie, R. S., Binning, P. y Kalma, J. D. (2005). A time series approach to inferring groundwater recharge using the water table fluctuation method. Water Resources Research, 41, W01008, doi:10.1029/2004WR003077.
Fidalgo, F., Pascual, R. y De Francesco, F. (1975). Geología superficial de la llanura Bonaerense (Argentina). Actas del VI Congreso Geológico Argentino, 103-138.
González Bonorino, R., Zardino, R., Figueroa, M. y Limousin, T. (1956). Estudio geológico de las Sierras de Olavarría y Azul (Bs. As.). LEMIT, Serie II (63), pp 5-22.
Healy, R. W. y Cook, P. G. (2002). Using groundwater levels to estimate recharge. Hydrogeology Journal 10(1): 91-109.
Johnson, A. I. 1967. Specific yield-compilation of specific yields for various materials. Hydrologic Properties of Earth Materials, U.S Geological Survey Water-supply Paper, 1662- D.
Lerner, D. N., Issar, A. S. y Simmers, I. (1990). Groundwater recharge. A guide to understanding and estimating natural recharge. IAH Int. Contrib. Hydrogeol. 8, Heinz Heise, Hannover, 345 pp. Menking, K. M., Anderson, R. Y., Brunsell, N. A., Allen, B. D., Ellwein, A. L., Loveland, T. A.y
Hostetler, S.W. (2000). Evaporation from groundwater discharge playas, Estancia Basin, central New Mexico. Global and Planetary Change 25:133-147.
Miao, Ch., Chen, J., Zheng, X., Zhang, Y., Xu, Y.y Du, Q. (2017). Soil water and phreatic evaporation in shallow groundwater during an freeze-thaw period. Water 9:396-408. doi: 10.3390/w9060396.
Risser, D. W., Gburek, W. J. y Folmar, G. J. (2005). Comparison of methods for estimating ground-water recharge and base flow at a small watershed underlain by fractured bedrock in the eastern United States (Vol. 5038). US Department of the Interior, US Geological Survey.
Sala, J. (1983). Generalizaciónhidrológica de la Provincia de Buenos Aires. Coloquio Intern. de Grandes Llanuras. Unesco. V III, Olavarria, Prov. de Buenos Aires, Argentina, 1983.
Sala, J. M., Kruse, E., y Aguglino, R. (1987). Investigaciónhidrológica de la cuenca del arroyo Azul, Provincia de Buenos Aires. CIC Informe 37.
Scanlon, B. R., Healy, R. W. y Cook, P. (2002). Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal 10:18-39.
van Dam, J. C. y Feddes, R. A. (2000). Numerical simulation of infiltraton, evaporation and shallow groundwater levels with the Richards equation. Journal of Hydrology 223(1-4):72-85.
Varni, M., Comas, R., Weinzettel, P. y Dietrich, S. (2013). Application of water table fluctuation method to characterize the groundwater recharge in the Pampa plain, Argentina. Hydrological Sciences Journal 58(7): 1445-1455, doi: 10.1080/02626667.2013.833663.
Zhang, L., Dawes, W.R. y Walker, G.R. (2001). Response of mean anual evapotranspiration to vegetation changes at catchment scale. Water Resources Research 37(3):701-708
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.