An approach to the evapotranspiration discharges of the pampeano aquifer in the del Azul basin (pampean plain)

Authors

  • Romina Marcovecchio Instituto de Hidrología de Llanuras. Azul, Buenos Aires, Argentina y Consejo Nacional de Investigaciones Científicas y Técnicas. Argentina.    https://orcid.org/0000-0001-7470-9117
  • Marcelo Varni Instituto de Hidrología de Llanuras. Azul, Buenos Aires, Argentina y Universidad Nacional del Centro de la Provincia de Buenos Aires Rectorado y Facultad de Ciencias Humanas, Buenos Aires, Argentina. E-mail para correspondencia: marcelovarni@gmail.com https://orcid.org/0000-0002-0271-909X

DOI:

https://doi.org/10.35305/curiham.v26i0.149

Keywords:

groundwater total recharge, groundwater flow discharge, direct discharge by evapotranspiration

Abstract

Total monthly recharges, discharges by groundwater flow to discharge zones and losses by direct evapotranspiration from the water table are studied from the daily variation of the water table level in a shallow well in the flat area of the Azul stream basin., located at the Pampean plain. The phreatic levels were recorded using a piezoresistive pressure sensor. The analyzed phreatic aquifer is the Pampeano aquifer. The phreatic levels varied in the period analyzed (2007-2018) between 0.5 and 4 m deep. Direct evapotranspiration discharges from the water table have been found to be a relevant fraction of the total recharge (42%). Direct evapotranspiration discharges are higher in warm months, although the least inter-annual variability occurs in cold and warm months. The greatest variability occurs in autumn and spring. In the period 2007-2018, the average annual total recharge was 252 mm, the average annual loss of recharge to the atmosphere was 105 mm, with a standard deviation of 25 mm and a coefficient of variation of 0.24. This important percentage of the total recharge that is lost by direct evapotranspiration means that the soil water balances must be considered with special attention to estimate the recharge to the aquifer (which does not consider this loss) and explains certain inconsistencies with the groundwater flow models. that required a decrease in recharge in the flattest area to enable the adjustment of the water table levels.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Assouline, S., Tyler, S.W., Selker, J. S., Lunati, I., Higgins, C. W. y Parlange, M. B. (2013). Evaporationfrom a shallow water table: diurnal dynamics of water and heat at the surface of drying sand. Water Resources Research, 49 (7) 4022-4034.

Barua, S., Cartwright, I., Dresel, P. E. y Daly, E.(2020). Using multiple methods to understand groundwater recharge in a semi-arid area, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-143, (in review).

Crosbie, R. S., Binning, P. y Kalma, J. D. (2005). A time series approach to inferring groundwater recharge using the water table fluctuation method. Water Resources Research, 41, W01008, doi:10.1029/2004WR003077.

Fidalgo, F., Pascual, R. y De Francesco, F. (1975). Geología superficial de la llanura Bonaerense (Argentina). Actas del VI Congreso Geológico Argentino, 103-138.

González Bonorino, R., Zardino, R., Figueroa, M. y Limousin, T. (1956). Estudio geológico de las Sierras de Olavarría y Azul (Bs. As.). LEMIT, Serie II (63), pp 5-22.

Healy, R. W. y Cook, P. G. (2002). Using groundwater levels to estimate recharge. Hydrogeology Journal 10(1): 91-109.

Johnson, A. I. 1967. Specific yield-compilation of specific yields for various materials. Hydrologic Properties of Earth Materials, U.S Geological Survey Water-supply Paper, 1662- D.

Lerner, D. N., Issar, A. S. y Simmers, I. (1990). Groundwater recharge. A guide to understanding and estimating natural recharge. IAH Int. Contrib. Hydrogeol. 8, Heinz Heise, Hannover, 345 pp. Menking, K. M., Anderson, R. Y., Brunsell, N. A., Allen, B. D., Ellwein, A. L., Loveland, T. A.y

Hostetler, S.W. (2000). Evaporation from groundwater discharge playas, Estancia Basin, central New Mexico. Global and Planetary Change 25:133-147.

Miao, Ch., Chen, J., Zheng, X., Zhang, Y., Xu, Y.y Du, Q. (2017). Soil water and phreatic evaporation in shallow groundwater during an freeze-thaw period. Water 9:396-408. doi: 10.3390/w9060396.

Risser, D. W., Gburek, W. J. y Folmar, G. J. (2005). Comparison of methods for estimating ground-water recharge and base flow at a small watershed underlain by fractured bedrock in the eastern United States (Vol. 5038). US Department of the Interior, US Geological Survey.

Sala, J. (1983). Generalizaciónhidrológica de la Provincia de Buenos Aires. Coloquio Intern. de Grandes Llanuras. Unesco. V III, Olavarria, Prov. de Buenos Aires, Argentina, 1983.

Sala, J. M., Kruse, E., y Aguglino, R. (1987). Investigaciónhidrológica de la cuenca del arroyo Azul, Provincia de Buenos Aires. CIC Informe 37.

Scanlon, B. R., Healy, R. W. y Cook, P. (2002). Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal 10:18-39.

van Dam, J. C. y Feddes, R. A. (2000). Numerical simulation of infiltraton, evaporation and shallow groundwater levels with the Richards equation. Journal of Hydrology 223(1-4):72-85.

Varni, M., Comas, R., Weinzettel, P. y Dietrich, S. (2013). Application of water table fluctuation method to characterize the groundwater recharge in the Pampa plain, Argentina. Hydrological Sciences Journal 58(7): 1445-1455, doi: 10.1080/02626667.2013.833663.

Zhang, L., Dawes, W.R. y Walker, G.R. (2001). Response of mean anual evapotranspiration to vegetation changes at catchment scale. Water Resources Research 37(3):701-708

Published

2020-12-09

How to Cite

Marcovecchio, R., & Varni, M. (2020). An approach to the evapotranspiration discharges of the pampeano aquifer in the del Azul basin (pampean plain). Cuadernos Del CURIHAM Is a Half-Year Publication of the Centro Universitario De Rosario of Hydro-Environmental Research Directed by Adelma Mancinelli. It Is Dedicated to Spreading the Results of Basic and Applied Research As Well As Technological Innovations on the Realm of Hidro-Environmental Issues. It May Include Field Study Results, Interdisciplinary Studies or Studies on the State of Art on the Field: Basic Hydraulics, Fluvial and Hydrodinamics, Superficial and Underground Hydrology, Urban and Stochastic Hydrology, Planning and Management of Hydric Resources, Environmental Evaluation, Pollution and Quality of the Water, Politics and Water Legislation, Regional Hydro-Environmental Management, Hydraulic Construction, Methods and Techniques and Everything Related to Hydro-Environmental Sciences., 26, 13–19. https://doi.org/10.35305/curiham.v26i0.149

Issue

Section

Artículos

Most read articles by the same author(s)