Análisis de la relación entre la conductividad hidráulica efectiva y la curva número bajo dos intensidades de lluvia
DOI:
https://doi.org/10.35305/curiham.v24i0.111Keywords:
Rainfall simulator, Infiltration model, Runoff, Scale changeAbstract
The effective hydraulic conductivity (Ke) of the Green Ampt infiltration model and the curve number method (CN), are tools frequently used in runoff and contamination models. The aim of the present work was to analyze the relationship between Ke and CN, parameters calibrated from infiltration tests carried out in the field with a rain simulator, determining in turn the effect of the spatial scale change over this relationship. The work was carried out with infiltration results generated with a rain simulator on agricultural and livestock soils, applying two intensities: 60 and 30 mm h-1. The CN and Ke parameters were calibrated, analyzing the relationship between both. In turn, we worked with the Hec Hms 4.0 model to verify if the spatial scale change modified the CN-Ke relationship previously obtained. In livestock soils there was no significant relationship between CN and Ke. In those with agricultural aptitude, a significant negative linear relationship was observed, which depended on the applied rainfall intensity. It was found that the increase in scale, affected the runoff values estimated by the model, compared to those generated in the field. However, the CN-Ke ratio obtained in small plots, did not vary significantly when was evaluated for a larger área.
Downloads
Metrics
References
Arnold, J. G., Srinivasan, R., Muttiah, R. S., Williams, J. R. (1998). Large area hydrologic modeling and assessment Part 1: Model development. J.Am. Water Resour. As., 34(1), 73-89.
Baveye, P. y Sposito, G. (1984). The operational significance of the continuum hypothesis in thetheory of wáter movement through soils and aquifers. Water Resources Research, 20 (5), 521-530.
Castiglioni, M. (2016). Propiedades físicas y conductividad hidráulica efectiva en el transcurso de una rotación trigo/soja. Cuadernos del Curiham, 22, 15-25.
Chow, V. T., Maidment, D. R. y Mays, L. W. (1994). Hidrología aplicada. Suárez, M. E. (Ed). McGraw Hill, Interamericana S.A., 584 págs.
Darder, M. L., Castiglioni, M., Andriulo, A. y Sasal, M. C. (2018). Calibración de parámetros de un modelo de infiltración en la cuenca alta del Arroyo Pergamino. Ciencia del Suelo. En revisión.
De Roo, A. P. J. y Jetten, V. G. (1999). Calibrating and validating the LISEM model for two data sets from the Netherlands and South Africa. Catena, 37(3–4), 477–493.
Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M. y Robledo, C. W. (2017). InfoStat versión 2017. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar
Ficklin, D. L. y Zhang, M. (2013). A comparison of the curve number and Green-Ampt models in an agricultural watershed. Trans. ASABE, 56(1), 61-69.
Green, W. H. y Ampt, G. (1911). Studies in soil physics. I: The flow of air and water through soils. J. Agr. Sci., 4, 1–24.
Hawkins, R. (1993). Asymptotic determination of runoff curve numbers from data. J. Irrig. Drainage Eng., 19(2), 334-345.
Hec-Hms 4.0. (2010). Hydologic Modeling System. U.S. Army Corps of Engineers. Institute for Water Resource. Hydrologic Engineering Center. Davis C.A.
Huber, W. C. y Dickinson, R. E. (1988). Storm Water Management Model, Version 4: User's Manual. Environmental Research Laboratory. U.S. Environmental Protection Agency, Athens, Georgia.
INTA. (1972). Cartas de Suelo de la República Argentina. Hoja 3360-32 Pergamino, 106p.
Irurtia, C.B. y Mon, R. 1994. Microsimulador de lluvia para determinar infiltración a campo. Instituto de Suelos. CIRN INTA Castelar. Publicación Técnica 176.18 pp.
King, K. W., Arnold, J. G. y Bingner, R. L. (1999). Comparison of Green-Ampt and curve number methods on Goodwin Creek watershed using SWAT. Trans. ASAE., 42(4), 919-925.
Knisel, W. (1980). CREAMS. A Field-Scale Model for Chemicals, Runoff and Erosion from Agricultural Management Systems. USDA Conservation Research Report, No.26, 640 pp.
Laflen, J. M., Elliot, W. J., Flanagan, D. C., Meyer, C. R. y Nearing, M. A. (1997). WEPP predicting
water erosion using a process-based model. J. Soil Water. Conserv., 52 (2), 96–102.
Lane, L. J. y Nearing, M. (Editors). (1989). USDA Water Erosion Prediction Project: Hillslope Profile Model Documentation. NSERL Report No. 2, National Soil Erosion Research Laboratory, West Lafayette, Indiana.
Luque, J. A., Paoloni, J. D. y Bonorino, G. A. (1979). Estudio geológico e hidrogeológico de la cuenca del Río Sauce Grande. Publicación interna del Departamento de Ciencias Agrarias y de Ciencias Naturales de la Universidad Nacional del Sur, Serie Hidrología. Bahía Blanca, Argentina, 3: 64 p.
Mallants, D., Binayak, P., Mohanty, B. P., Vervoort, A. y Feyen, J. (1997). Spatial analysis of saturated hydraulic conductivity in a soil with macropores. Soil Technol., 10, 115-131.
Mao, L., Li, Y., Hao, W., Zhou, X., Xu, C. y Lei, T. (2016). A new method to estimate soil wáter infiltration based on a modified Green–Ampt model. Soil Till. Res., 161, 31–37.
Nash, J. E. y Sutcliffe, J. V. (1970). River Flow Forecasting Through Conceptual Models, Part 1, A Discussion of Principles. J. Hydrol., 10, 282-290.
Nearing, M. A., Deer-Ascough, L. y Laflen, J. M (1990). Sensitivity analysis of the WEPP hillslope profile erosion model. Trans. ASAE, 33(3), 839-849.
Nearing, M. A., Liu, B. Y., Risse, L. M. y Zhang, X. (1996). Curve numbers and Green-Ampt effective hydraulic conductivities. Water Resour. Bull., 32(1), 125-136.
Orsolini, H. E., Zimmermann, E. D. y Basile, P. A. (2000). Hidrología, procesos y métodos. UNR (Ed). Rosario. 319 pp.
Rawls, W. J. y Brakensiek, D. L. (1983). A procedure to predict Green and Ampt infiltration parameters. In Proc. ASAE Conf. On Advances in Infiltration, ASAE, St. Joseph, Michigan, pp. 102-112.
Rawls, W. J., Brakensiek, D. L. y Miller, N. (1983). Green Ampt infiltration parameters from soils data. J Hidraul. Div., Am. Soc. Civ. Eng., 109(1), 62-70.
Rawls, W. J. y Brakensiek, D. L. (1986). Comparison Between Green-Ampt and Curve Number Runoff Predictions. Trans. ASAE, 29(6), 1597-1599.
Risse, L. M. (1994). Validation of WEPP Using Natural Runoff Plot Data. Unpublished Ph.D. Dissertation, National Soil Erosion Research Laboratory, Purdue University, West Lafayette, Indiana, 230 p.
Risse, L. M., Liu, B. Y. y Nearing, M. A. (1995a). Using curve numbers to determine baseline values of Green-Ampt effective hydraulic conductivities. Water Resour. Bull., 31(1), 147-158.
Risse, L. M., Nearing, M. A. y Zhang, X. C. (1995b). Variability in Geen-Ampt effective hydraulic conductivity under fallow conditions. J. Hydrol, 169, 1-24.
Sheridan, J. M. (1994). Hydrograph time parameters for flatland watersheds. Trans. ASAE 37, 103-113.
USDA-NRCS. (2010). National Engineering Handbook. Section 4: Hydrology. National Soil Conservation Service, USDA, Washington, DC.
Van den Putte, A, Govers, G., Leys, A., Langhans, C., Clymans, W. y Diels, J. (2013). Estimating the parameters of the Green–Ampt infiltration equation from rainfall simulation data: Why simpler is better. J. Hydrol, 476, 332–344.
Van der Zweep, R. A. (1992). Evaluation of the Water Erosion Prediction Project's Hydrologic Component on a Semi Arid Rangeland Watershed. Unpublished M.S. Thesis, University of Arizona, Tucson, Arizona.
Yoo, K. H., Yoon, K. S. y Soileau, J. M. (1993). Runoff curve numbers determined by three methods under conventional and conservation tillage. Trans. ASAE, 36(1), 57-63.
Zhang, X. C.; Nearing, M. A. y Risse, L. M. (1995). Estimation of Green-Ampt conductivity parameters: Part I. Row Crops. Trans. ASAE, 38(4), 1069-1077.
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.