Water-sediment-fluorescent tracer interaction in a reactor. Measurement of flocs

Authors

  • Alex Wolfenson Facultad de Ingeniería y Ciencias Hídricas. Universidad Nacional del Litoral. Santa Fe, Santa Fe. Argentina.
  • Verónica Lanza Facultad de Ingeniería y Ciencias Hídricas. Universidad Nacional del Litoral. Santa Fe, Santa Fe. Argentina.
  • Lucas Palman Facultad de Ingeniería y Ciencias Hídricas. Universidad Nacional del Litoral. Santa Fe, Santa Fe. Argentina.
  • Matias Imhoff Facultad de Ingeniería y Ciencias Hídricas. Universidad Nacional del Litoral. Santa Fe, Santa Fe. Argentina.
  • Ana Alvarez Facultad de Ingeniería y Ciencias Hídricas. Universidad Nacional del Litoral. Santa Fe, Santa Fe. Argentina.
  • Alfredo Trento Facultad de Ingeniería y Ciencias Hídricas. Universidad Nacional del Litoral. Santa Fe, Santa Fe. Argentina. E-mail para correspondencia: alfredotrento@gmail.com

DOI:

https://doi.org/10.35305/curiham.v25i0.114

Keywords:

Fluorescent tracer, Sediments, Reactor

Abstract

The objective was to study in controlled laboratory conditions the interaction between the Amidorhodamine G fluorescent tracer and sediments of the Salado river (Santa Fe), with d50 = 11.6 μm and 97% of fine sediments. A cylindrical reactor designed for this purpose and for different hydrodynamic conditions were used. The tangential and radial velocities were measured by an ADV probe, while floc sizes, turbidity and other variables were determined with multiparametric probes. The range of angular velocities (N) used was a function of the expected shear stresses for different river scenarios. The results obtained in a first test using the sediments in distilled water were contrasted with those of a second test, in which tracer was added. The maximum floc sizes, df50≈48 μm, were obtained without rhodamine, for concentrations of total suspended solids (SST) between 50 and 100 mg/L and N>150 rpm. For SST greater than 100 mg/L the df50 decayed to df50≈25 μm for the entire range of N, regardless of the presence of the tracer. For SST>150 mg/L with rhodamine the df50 were greater between 5 and 10% than those obtained without rhodamine. It is concluded that both the turbidity and floc sizes were affected by the tracer presence, for different N and SST.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Behrens, H., Beims, U., Dieter, H., Dietze, G., Eikmann, T., Grummt, T., Hanisch, H., Henseling, H., Käß, W., Kerndorff, H., Leibundgut, C., Müller-Wegener, U., Rönnefahrt, I., Scharenberg, B., Schleyer, R., Schloz, W. y Tilkes, F. (2001) Toxicological and EcotoxicologicalAssessment of WaterTracers, Hydrogeology Journal, 9(3):321-325. doi: 10.1007/s100400100126

Benevides, X., Oliveira Silva, I.,GallisaGuimarães L., Gallo, M., Parente Ribeiro, C. yFigueiredo, A. (2014) Estimation of suspended sediment concentration by acoustic scattering: an experimental and theoretical analysis for spherical particles.J Soils Sediments, 14, 1325–1333. doi: 10.1007/s11368-014-0905-5

Bertrand, M., Parmentier, D., Lebaigue, O., Plasari, E. yDucros F. (2012) Mixing Study in an Unbaffled Stirred Precipitator Using LES Modelling. International Journal of Chemical Engineering, ID 450491, 11 pages.doi:10.1155/2012/450491

Bouyer, D., Coufort, C., Liné, A., Do-Quang, Z. (2005) Experimental analysis of floc size distributions in a 1-L jar under different hydrodynamics and physicochemical conditions, Journal of Colloid and Interface Science, 292 (2) 413–428.doi: 10.1016/j.jcis.2005.06.011

Carr, M. y Rehmann, C. (2007) Measuring the Dispersion Coefficient with Acoustic Doppler Current Profilers.Journal of Hydraulic Engineering, 133(8).doi:10.1061/(ASCE)0733-9429

Chapra, S.C. (1997) Surface Water-Quality Modelling. John Wiley and Sons Inc., Iowa, 844 p.

Cheng, W.P., Kao, Y.P. y Yu, R. F. (2008)A novel method for on-line evaluation of floc size in coagulation process.Water Research, 42 (10-11), 2691-2697.doi: 10.1016/j.watres.2008.01.032

Clark, D., Feddersen, F., Omand, M. yGuza R. (2009)Measuring Fluorescent Dye in the Bubbly and Sediment-Laden Surfzone.Water, Air and Soil Pollution, 204 (1-4), 103–115. doi: 10.1007/s11270-009-0030-z

Coufort, C., Dumas, D., Bouyer, D. yLiné, A. (2008) Analysis of floc size distributions in a mixing tank.Chemical Engineering and Processing, 47(3), 287–294. doi: 10.1016/j.cep.2007.01.009

Dyer, K. R. (1989) Sediment Processes in estuaries: Future research requeriments.Journal of Geophysical Research, 94, C10, 14327-14339. doi: 10.1029/JC094iC10p14327

Edzwald, J.K., Upchurch, J.B. yO´Melia, C.R. (1974) Coagulation in Estuaries.Environmental Science and Technology, 8 (1) 58-63.

Filippa, L., Freire, L., Trento, A., Alvarez, A., Gallo, M. y Vinzón, S. (2011) Laboratory evaluation of two LISST-25X using river sediments.SedimentaryGeology, 238, 268-276. doi: 10.1016/j.sedgeo.2011.04.017

Filippa, L. (2014) Estudio de la dinámica de la floculación y su relación con el transporte de cromo en el río Salado (Santa Fe). (Tesis de Doctorado), Facultad de Ingeniería y Ciencias Hídricas, Universidad NAcional del Litoral, Santa Fe, Argentina.

Fischer, H.B. (1968) Dispersion predictions in natural streams.Journal of the Sanitary EngineeringDivision, ASCE, 94 (5), 927-943.

Fischer,H. B., List, E. J., Koh, R. C. Y., Imberger, J. y Brooks, N. H.. (1979)Mixing in inland and coastalwaters. AcademicPress.

Goes, Y.W., Buraschi, G.B., Freire, L.C., Benevidez, C.X., Álvarez, A. M. T., Gallo, M.N., Gallisa, L. (2019) Mediciones de concentración con sondas de turbiedad (OBS) en la presencia de mezclas de sedimentos. VI Simposio sobre métodos experimentales en hidráulica. Paysandú, República

Oriental del Uruguay.

Guo, Q. (2006) Correlation of Total Suspended Solids (TSS) and Suspended Sediment Concentration (SSC) Test Methods.New Jersey Department of Environmental Protection, Division of Science, Research and Technology. Contract No. SR05-005.

Hamidifar, H., Omid, M. yKeshavarzi, A. (2015)Longitudinal dispersion in waterways with vegetated floodplain.Ecological Engineering, 84, 398–407. doi: 10.1016/j.ecoleng.2015.09.048

Liu H. (1977) Predicting Dispersion Coefficient of Streams.Journal of the Environmental Engineering, 103(1), 59-69.

Mehta, A. yMcAnally, W. W. (2007) Fine-grained sediment transport. En M. Garcia.(Ed.), Sedimentation Engineering Processes, Measurements, Modeling, and Practice (pp. 253- 306).Reston, Estados Unidos de Norteamérica: American Society of Civil Engineers.

Mikes, D., Verney, R., Lafite, R. y Belorgey, M. (2004) Controlling factors in estuarine flocculation processes experimental results with material from the Seine Estuary, Northwestern France. Journal of Coastal Research, Special Issue 41.

Nagata, S. (1994) Mixing: principles and applications.Chichester, Halsted Press Wiley.

Rutherford, J.C. (1994) River mixing. New York. John Wiley and Sons.

Sequoia (2009) LISST–25 User's Guide, 2009.http://sequoiasci.com.

Shen, C., Niu, J., Anderson, E. yPhanikumar, M. (2010) Estimating longitudinal dispersion in rivers using Acoustic Doppler Current Profilers.Advances in Water Resources, 33(6), 615-623.doi: 10.1016/j.advwatres.2010.02.008

Smart, P.L. y Laidlaw, I.M.S. (1977)An Evaluation of Some Fluorescent Dyes for Water Tracing. Water Resources Research, 13(1), 15-33. doi: 10.1029/WR013i001p00015

Sontek (2009) FlowTracker Handheld ADV Technical Manual Firmware 3.7 Software Version 2.30. San Diego, EstadosUnidos de Norteamérica.

Trento, A. yÁlvarez, A.M.T. (2011) A numerical model for the transport of chromium and fine sediments.Environmental Modeling and Assessment, 16(6), 551-564.doi: 10.1007/s10666-011-9263-5.

Winterwerp, J.C. (2002) On the flocculation and settling velocity of estuarine mud, Continental Shelf Research, 22(9), 1339-1360. doi: 10.1016/S0278-4343(02)00010-9

YSI 6600 (2009) User Manual.http://www.ysi.com/media /pdfs/E52-6600V2.pdf

Zhenbei Whang, J.N., XiaoyuJi, Y. Y. (2018) Effect of the micro-flocculation stage on the flocculation and settling velocity of estuarine mud.Science of the Total Environment, 633(15) 1183-1191. doi: 10.1016/j.scitotenv.2018.03.286

Published

2019-12-13

How to Cite

Wolfenson, A., Lanza, V., Palman, L., Imhoff, M., Alvarez, A., & Trento, A. (2019). Water-sediment-fluorescent tracer interaction in a reactor. Measurement of flocs. Cuadernos Del CURIHAM Is a Half-Year Publication of the Centro Universitario De Rosario of Hydro-Environmental Research Directed by Adelma Mancinelli. It Is Dedicated to Spreading the Results of Basic and Applied Research As Well As Technological Innovations on the Realm of Hidro-Environmental Issues. It May Include Field Study Results, Interdisciplinary Studies or Studies on the State of Art on the Field: Basic Hydraulics, Fluvial and Hydrodinamics, Superficial and Underground Hydrology, Urban and Stochastic Hydrology, Planning and Management of Hydric Resources, Environmental Evaluation, Pollution and Quality of the Water, Politics and Water Legislation, Regional Hydro-Environmental Management, Hydraulic Construction, Methods and Techniques and Everything Related to Hydro-Environmental Sciences., 25, 19–29. https://doi.org/10.35305/curiham.v25i0.114

Issue

Section

Artículos