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ABSTRACT 

 

This study presents a semi-automated approach for mapping the extent and frequency of floods in 

agriculturally dominated river watersheds, using the Quequén Grande River watershed as a case study. By 

the combination of normalized difference indices computed from Landsat imagery and the application of 

Otsu’s thresholding method in Google Earth Engine (GEE) environment, two flood categories were defined: 

Open Flood Surfaces (OFS) and Flooded Vegetation (FV). The analysis of historical flood frequency allowed 

the proposal of flood prevention strategies to be implemented in each defined flood frequency class, which is 

essential for flood mitigation in agriculturally dominated river watersheds. 

 

Keywords: Google Earth Engine, Landsat Imagery, Spectral Indices, Flood Mapping, Flood Prevention 

Strategies. 

 

 

RESUMEN 

 

En este estudio se propone un método semiautomático para la cartografía de la extensión y frecuencia de las 

inundaciones en una cuenca hidrográfica con predominio agrícola, seleccionándose la cuenca del Río 

Quequén Grande como caso de estudio. Mediante la combinación de índices diferenciales normalizados 

calculados a partir de imágenes Landsat y la aplicación del método de umbralización desarrollado por Otsu 

en el entorno de Google Earth Engine (GEE), se definieron dos categorías para las inundaciones: superficies 

de inundación abiertas (OFS) y vegetación inundada (FV). El análisis de la frecuencia histórica de las 

inundaciones permitió la propuesta de estrategias de prevención a las inundaciones dirigidas a ser 

implementadas en cada clase de frecuencia de inundación definida, siendo esencial para la mitigación de 

inundaciones en cuencas hidrográficas con predominio agrícola. 

 

Palabras clave: Google Earth Engine, Imágenes Landsat, Índices Espectrales, Cartografía de inundaciones, 

Estrategias de Prevención a la Inundación. 
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INTRODUCTION 

 

Flooding is an extended natural hazard that affects 

the society of different parts of the world, and it is 

considered the most recurring and devastating 

problem from its impact on the economic and social 

conditions of human lives (Alderman et al., 2012; 

Wannous & Velasquez, 2017). The influence of 

human activity also enhances the severity and 

consequences of flooding events, which are 

generated by the arbitrary coincidence of different 

meteorological factors (Feloni et al., 2019). Global 

climatic change, land-use changes, and accelerated 

urbanization are intensifying flood events 

worldwide, independently of their topographic and 

meteorological context (Dash & Sar, 2020; 

Detrembleur et al., 2015; Du et al., 2015).   

 

Predicting the potential flood inundation extent (i.e., 

identifying areas susceptible to flooding) of heavy 

rainfall events is critical, particularly in developing 

countries where the effects of floods are severely felt 

(Dash & Sar, 2020). However, in most of these 

countries, the accessibility of flood inundation extent 

maps is scarce, and those existing are outdated and 

have a low spatio-temporal resolution (Mehmood et 

al., 2021). In Latin America and the Caribbean 

region (LAC) floods are the most common disaster, 

with 548 floods occurring since 2000 (UN-OCHA, 

2020). Here, the intensification of flood 

consequences is expected due to several socio-

economic and political factors such as inefficient 

public policies, infrastructural problems, poverty 

persistence, ineffective emergency response to 

flooding events, unregulated and exponential 

urbanization of floodplains, anthropogenic 

degradation of catchments, and the lack of flood data 

(Sandoval & Sarmiento, 2020; UN-OCHA, 2020). 

 

Over the last decade, there has been a proliferation 

of Earth Observations (EO) data. The global open 

data access from operational satellites like the 

Landsat series, together with important advances in 

cloud computing, have made possible the 

cartography of inundation over increasingly larger 

scales (DeVries et al., 2020; Hawker et al., 2020; 

Mehmood et al., 2021), and at relatively high spatio-

temporal resolution (Wulder & Coops, 2014). 

Particularly, the cloud-based platform Google Earth 

Engine (GEE) stands out. It was introduced by 

Google Inc. for planetary-scale geospatial analysis 

and provides free access to high-performance 

computing resources, allowing the processing of 

extensive geospatial datasets (Gorelick et al., 2017). 

The development of this tool represents a great 

opportunity for effective flood response 

interventions and management plans, especially in 

under-resourced regions of the world with a lack of 

information (Hawker et al., 2020). In the case of 

flood inundation extent maps developed from 

satellite imagery, the creation of several algorithms 

has been produced by different institutions such as 

universities, space agencies, or companies directed 

to disaster recovery and response (DeVries et al., 

2020; Hawker et al., 2020; Mehmood et al., 2021; 

Policelli et al., 2017). Specifically, for the Global 

South, most of the flood-related research including 

the use of GEE for flood extent identification is 

associated with South Asia (Kumar et al., 2022; Lal 

et al., 2020; Pandey et al., 2022; Vanama et al., 

2020), with very few studies in LAC countries 

(Mora et al., 2021; Tellman et al., 2021). 

 

In Argentina, extreme precipitation events causing 

floods and droughts lead to the country’s natural 

hazard risk profile. Floods have been responsible 

for causing important economic losses since 1980, 

with an average of US $ 1 billion annually (World 

Bank, 2021), and these losses could increase by 

125% due to climate change. Recently, historical 

increases in the frequency of flooding linked to 

severe rainfall events highlighted the need for 

improved risk management strategies. This 

behavior can be partially attributed to higher 

average precipitation, land-use changes, and water 

table rising (Rozenberg et al., 2021). In the case of 

very flat and poorly drained landscapes, the rise in 

water tables causes floods linked to increased water 

storage, and after reaching high levels water losses 

occur as liquid water outflows, in addition to an 

increased evaporation rate (Fan et al., 2013; 

Kuppel et al., 2015). 

 

The Argentine Pampa region (east-central of the 

country), is a subhumid aeolian plain that 

encompasses the most populated and productive 

sector of the country. Here, an alternation of non-

flooded and flooding cycles occurs and describes the 

ephemeral nature of surface water coverage 

(Houspanossian et al., 2018), which makes this 

region highly relevant for implementing flood 

mapping techniques. During large episodic flood 

events, an important fraction of the sedimentary 

Pampean Plain is covered by water for months or 

even years, on account of low horizontal water 

transport caused by the low surface runoff and the 

slowness of groundwater flow (Aragón et al., 2011). 

The hydrological conditions of these very flat 
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regions must be considered carefully when land 

management strategies are implemented (Kuppel et 

al., 2015), especially because there is an expected 

intensification of farming at such arable lands since 

global food demand and trade are increasing 

(Paruelo et al., 2005). 

 

This article presents a semi-automatic methodology 

for mapping the spatial extent and frequency of 

flooding in agriculturally dominated plain 

environments. Based on spectral indices computed at 

the GEE platform, our approach aims to generate 

historical flood frequency maps from past flood 

events that occurred between 2000 and 2020. 

Additionally, the proposed approach gives some 

advances in the detection and extraction not only of 

open flood surfaces but also of flooded areas 

underneath vegetation (i.e., flooded vegetation), 

which is of particular importance for flood 

monitoring and assessment. By conducting a 

comprehensive multi-temporal assessment of floods 

in an agriculturally dominated watershed, we sought 

to achieve the following results: i) identify areas 

with a history of frequent flooding, providing critical 

information to authorities and farmers regarding the 

flood-prone regions within the area, and ii) enable 

action guidelines for private landowners and 

agricultural producers to reduce the extent and 

impact of flood-related damage. 

 

 

STUDY AREA 

 

To analyze the usefulness of the generated 

algorithm, a representative plain river watershed of 

the Pampa Region is proposed as a case study. The 

Quequén Grande River Watershed (QGRW) is an 

extensive river catchment located in an agricultural-

livestock area of great economic importance for the 

country, with several small and medium-sized cities. 

Towards the southwest of the Tandilia Range 

System (TS), the origin of the Quequén Grande 

River (QGR) is marked by an undulating plain with 

a dominant northwest-southeast slope called “Pampa 

de Juárez”, and flows to the southeast across the 

Pampean Plain, reaching the Atlantic Ocean near 

Necochea city (Campo de Ferreras & Piccolo, 1999). 

Tributaries of this main water course are small 

streams developed almost exclusively from its right 

bank (Marini & Piccolo, 2005). From the 

hydrological point of view, this catchment belongs 

to a temperate climate zone where the mean annual 

precipitation in the basin is about 800 mm. 

However, the area is characterized by climatic 

oscillations and instabilities, with a history of both 

floods and drought periods.  

 

The QGRW comprises six geomorphological units, 

i.e., ranges, perirange aeolian hills, relic hills, 

alluvial plain, poor drainage alluvial plain, and hills 

with shallow lakes (Teruggi et al., 2005) (Figure 1). 

Here, agriculture predominates over livestock 

farming, especially through the cultivation of wheat, 

natural pastures, and winter fodder cereals (Campo 

de Ferreras & Piccolo, 1999). The QGRW covers a 

surface of about 11000 km2 and most of it consists 

of an essentially flat plain with a topographic 

average gradient of 0.03 (Teruggi et al., 2005). In 

the north part of the catchment area, a small sector is 

taken up by low-relief ranges (maximum elevation = 

510 m a.s.l.) corresponding to the TS. 

 

Hydrogeologically, the loess sediments of the 

Pampean Plain constitute an aquifer of great 

importance for the country, ranging between 70 -

100 m in thickness. This hydrogeological sequence 

represents an unconfined, shallow, and multi-layer 

aquifer, with permeability changes caused by 

subtle grain size and clay content variations 

(Martínez & Bocanegra, 2002). Groundwater 

recharge of this area is attributed mainly to 

precipitation, with groundwater discharge 

occurring towards the Atlantic Ocean, the surface 

drainage network (i.e., rivers and streams), and the 

shallow lakes located at the southwestern limit of 

the QGRW. Here, a hydraulic barrier to the 

Pampean Aquifer has been proposed in-depth 

acting as a regional discharge area (Solana et al., 

2021a). Rivers and streams are primarily effluents 

along their course, with south and/or southeast 

direction usually aligned to the groundwater flow 

path. For the QGR, a base-flow estimation of 70-

90% was obtained (Martínez et al., 2010). 

 

 

MATERIALS AND METHODS 

 

The proposed flood mapping code was developed in 

the GEE JavaScript API. This algorithm generates a 

stack of spatially overlapped pixels classified as 

water/non-water corresponding to the rainiest years 

between 2000 and 2020. Surface water changes were 

analyzed at the GEE platform by processing freely-

available Surface Reflectance (SR) cloud products 

of Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 

OLI/TIRS imagery. To exclude permanent water 

bodies from flooded areas, the driest year of this 

period was also analyzed, and permanent water 
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bodies (i.e., rivers, streams, and shallow lakes) were 

masked. Water detection was achieved by the 

combination of two normalized difference indices: 

the Modified Normalized Difference Water Index 

(MNDWI; Xu, 2006) and the Normalized Difference 

Vegetation Index (NDVI; Tucker, 1979). Then, 

Above-Ground Water Presence Frequency (AWPF) 

maps were obtained following Borro et al. (2014). 

The proposed code consists of five steps: (1) free 

data selection from cloud servers, (2) pre-processing 

of Landsat imagery, (3) normalized difference 

indices computation and dynamic segmentation, (4) 

water detection, (5) multi-temporal flood analysis, 

and (6) mapping of flooding frequency. The 

methodological framework is shown in Figure 2. 

The generated GEE JavaScript codes for multi-

temporal flood analysis and mapping of flooding 

frequency are provided in Data Availability. 

 

 
Figure 1: Location and geomorphologic units of the study area. 

 

Data selection 

 

To evaluate rainfall trends in the study area, 

precipitation data from the last 60 years were 

reviewed. Time series of daily rainfall data 

(mm/day) within the influence area of the QGRW 

were extracted from national and local weather 

stations (National Institute of Agricultural 

Technology-INTA, Meteorological National 

Service-SMN, National University of Mar del Plata-

UNMdP). All rainfall time series from the period 

were analyzed and processed to obtain both a 

monthly mean value and an annual total value per 

year. Finally, those years between 2000 and 2020 

with annual rainfall values reaching one standard 

deviation above the mean precipitation value of the 

last 60 years were selected as target years for 

flooding mapping. Additionally, the driest year of 

this period (i.e., 2009) was selected for the 

generation of an exclusion mask of permanent water 

bodies from flooded areas. Regarding remote 

sensing data, SR cloud products from Landsat 5 TM, 

Landsat 7 ETM+, and Landsat 8 OLI/TIRS were 

selected from the Earth Engine Data Catalog.  
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Figure 2: Schematic workflow of the flood extension and frequency mapping, developed in the GEE environment. Each of the six 

steps is indicated by parentheses. 

 

 

Pre-processing of Landsat imagery 

 

Landsat satellite imagery was initially filtered by a 

cloud cover of less than 50%. Then, shadow and 

cloud masking were performed using the pixel 

quality assurance band (qa) with the C Function of 

Mask (CFMask) algorithm. The CFMask series of 

algorithms are recommended for the operational 

detection of clouds and cloud shadows at the 

Landsat series, as they are based on a previous 

understanding of such physical phenomena and can 

be implemented with no geographical restrictions 

(Foga et al., 2017). Additionally, scene edges of all 

datasets were removed by clipping a buffer of 500 m 

inward as a way to exclude no-data pixels such as 

abnormalities along Landsat 5 scene edges 

(Robinson et al., 2017). Spectral characteristics of 

Landsat datasets were also harmonized by a linear 

transformation of OLI to TM /ETM+ spectral space 

following Roy et al. (2016), in order to improve 

temporal continuity between sensors. 

 

Normalized difference indices computation and 

dynamic segmentation 

 

The two normalized difference indices selected for 

water detection were computed by the following 

equations: 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅
    (1) 

 

Where NIR: near-infrared band and R: red band. 

 

𝑀𝑁𝐷𝑊𝐼 =
𝐺−𝑆𝑊𝐼𝑅

𝐺+𝑆𝑊𝐼𝑅
     (2) 

 

Where G: green band and SWIR: short-wave infrared 

band. 
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The segmentation threshold of each index was 

estimated by the Otsu (1979) method for a training 

area where differences between land, vegetation, and 

water can be easily distinguished. This dynamic 

method was selected since it automatically selects a 

threshold from two mixed distributions through the 

density histogram, which eliminates the bias caused 

by arbitrary thresholding methods. For the selected 

time-lapse collection, median threshold values were 

determined because they represent points where the 

sums of the distances from the representative points 

of the sample are a minimum (Haldane, 1948). Once 

obtained, NDVI and MNDWI median thresholds 

were applied to the entire study area.  

 

Water detection 

 

By the calculation [equations (1) and (2)] and 

combination of the selected indices, more accurately 

flooded surface detection was achieved. Firstly, 

pixels with MNDWI values above the median 

threshold were identified as water. Then, an 

additional filter with NDVI values was applied to 

the pixel selection of MNDWI for each Landsat 

scene, in order to discern between open water 

surfaces and flooded vegetation. The proposed sub-

selection was based on the NDVI response to 

inundation since areas adapted to flood pulses are 

highly responsive, showing increases and peaks in 

NDVI values (Powell et al., 2014). Finally, two 

categories were defined as follows:  

 

a. Open Flood Surfaces (OFS): represented by 

pixels with MNDWI values above the 

median threshold and NDVI values below 

the median threshold. This category 

corresponds mainly to wetlands, ponds, 

rivers, streams, and open water surfaces. 

 

b. Flooded vegetation (FV): represented by 

pixels with MNDWI and NDVI values 

above median thresholds. In the scope of 

this paper, the term FV describes the 

temporary or permanent occurrence of a 

water surface beneath vegetated areas 

(Tsyganskaya et al., 2018). It corresponds 

to wetland vegetated areas, floodplains, and 

surrounding stream areas covered by water 

during inundation events. 

 

Flooding evolution analysis 

 

After OFS and FV detection of the selected Landsat 

scenes, Binary Surface Water (BSW) maps 

corresponding to each category were obtained. Multi-

temporal flood analysis was performed quarterly by 

running time-lapse collections of Landsat images and 

computing median BSW maps, since almost all the 

pixels of the QGRW surface were covered 

successfully after cloud masking (QGRW surface 

covered accuracy of about 99%). The selection of the 

quarterly multi-temporal flood analysis was based on 

the accuracy of the proposed algorithm at different 

time-lapse windows (i.e., monthly, bimonthly, and 

quarterly). To achieve better results, a cut-off 

tolerance threshold value of 1 was set, i.e., the total 

number of flooding maps obtained for the QGRW 

with a surface-covered accuracy lower than 80%, 

which was obtained quarterly. Additionally, pixels 

with no data values were filled by median BSW 

values of an additional 5-month running time-lapse 

collection of Landsat images. 

 

Mapping of flooding frequency 

 

Annual flooding frequency was analyzed in each 

pixel of the QGRW using the entire Landsat 

collection of the target years. The applied 

methodology was based on the procedure defined by 

Borro et al. (2014), which is defined by the 

following equation: 

 

𝐴𝑊𝑃𝐹𝑠𝑗=

∑ 𝐵𝑆𝑊𝑖𝑗
𝑁𝑠
𝑖=1

𝑁𝑠
    (3) 

 

Where AWPFsj represents the above ground water 

presence frequency value of the pixel j for the set s 

and corresponds to the ratio of images i with BSW 

equal to 1 in the pixel j (BSWij) of the total number 

of images in the analyzed set (Ns). As a result, 

AWPF maps describing the water permanence 

degree in each pixel were obtained, ranging from 0 

(pixels equal to 0 in all BSW maps) to 1 (pixels 

equal to 1 in all BSW maps). This methodology was 

successfully applied by Solana et al. (2021b) for the 

water frequency classification of shallow lakes 

located in the southwestern limit of the QGRW.  

 

To exclude permanent water bodies from flood 

mapping, an exclusion mask was generated by the 

flooding frequency analysis of the driest year of this 

period (i.e., 2009). Only the pixels labeled as 

permanent water (i.e., AWPF pixels equal to 1 

obtained for the driest year) have been included in the 

reference water mask. In every pixel of the watershed, 

each flood category (i.e., Open Flood Surfaces -OFS- 

and Flooded Vegetation -FV-) was classified 

according to the relative frequency of occurrence of 
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the flooded area. For this purpose, five flood 

frequency classes were defined: Very Low (AWPF < 

20%), Low (20% ≤ AWPF < 40%), Moderate (40% ≤ 

AWPF < 60%), High (60% ≤ AWPF < 80%), and 

Very High (AWPF ≥ 80%), taking as a reference the 

total number of handled images. Here, the exclusion 

of some BSW maps from the GEE code was required, 

since some Landsat scenes were affected by satellite 

malfunctions, and cloud shadows are not always 

successfully removed by the CFMask algorithm. 

However, excluded Landsat scenes from data 

processing only represented a small portion (12%) of 

the evaluated dataset (619 images). Satellite data 

distortion problems such as data loss are widely 

described on USGS official website (United State 

Geological Survey [USGS], access date 08/05/2023). 

 

Finally, historical flood frequency maps were 

generated by combining all annual datasets of OFS 

and FV categories, and classified according to the 

relative flood frequency previously defined 

following Borro et al. (2014). Subsequently, a set 

of flood prevention strategies was proposed for 

each specific frequency class. These recommended 

measures are intended to assist farmers and 

landowners in reducing flood-related damages on 

farmlands and agricultural landscapes, 

safeguarding agricultural productivity and 

minimizing potential losses. 

 

 

RESULTS 

 

Rainfall analysis 

 

Annual and monthly average values of precipitation 

data are shown in Figure 3. In the case of total annual 

precipitation, a mean value of 858 mm was obtained 

for the last 60 years, showing a clear increasing 

tendency. In the case of monthly rainfall averages, the 

mean value reached 74 mm, but the increasing 

tendency was less clear. The greatest annual rainfall 

averages with values reaching one standard deviation 

(i.e., 161.4 mm) above mean precipitation were 

obtained for 5 years. For those years, variations 

between monthly average values and mean 

precipitation of each month registered during the last 

60 years showed, in most cases, average rainfall 

values above mean monthly precipitation (Figure 3). 

This behavior was especially noticed during the 

second half of the year. Moreover, four of the greatest 

annual rainfall years showed similar rainfall averages 

in August, with a subsequent decrease in September 

and a substantial increase in October and November.  

 

 
Figure 3: A) Annual and B) Monthly rainfall values between 1959 and 2020 for the study area. C) Box plots of monthly rainfall 

amounts in the target years of the study and mean rainfall values for the period 1959-2020. 
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Changes in accumulated rainfall and flooded 

extension 

 

Comparisons between quarterly accumulated 

precipitation (mm), open flood surfaces (km2), and 

flooded vegetation (km2) of the target years are 

shown in Figure 4. Results indicated water and 

flooded vegetation increase during the cold months 

of the winter (JJA, JAS), which can be attributed to 

the descent of evapotranspiration. In the case of 

precipitation, an increase is observed during the 

summer season, being the general tendency for the 

study area. Furthermore, results obtained for the 

driest year of the selected time-lapse window (2009) 

can be attributed to the permanent water bodies of 

the QGRW, since flooded vegetation areas were 

almost absent. 

 

The extreme values of obtained Otsu’s median 

thresholds, the number of Landsat images used, and 

the percentages of QGRW surface covered 

accuracy obtained at the multi-temporal flood 

analysis, are shown in Table 1. In the case of the  

3-month running time-lapse analysis, accuracy was 

defined as the percentage of the total study area 

covered by the handled quarterly Landsat 

collection, which was improved by the proposed 

gap-filling method of an additional 5-month 

running time-lapse collection, reaching values 

closer to 100% of accuracy. 

 

 
 

Figure 4: Accumulated rainfall (mm), open flood surfaces extension (km2), and flooded vegetation (km2) of the target years, 

expressed quarterly. 

 
Table 1. Extreme values of Otsu’s median thresholds, number of Landsat images, and percentages of accuracy obtained at the 

multi-temporal flood analysis for each year. 

Year  

Otsu's MNDWI Otsu's NDVI  QuarterlyLandsat 3-month  Final 

 median thresholds median thresholds Collections (#) accuracy (%) accuracy (%) 

Min Max Min Max Min Max Min Max Min Max 

2001 -0.0393 0.0385 0.4139 0.4609 17 36 99.54 100.00 99.99 100.00 

2002 -0.1175 0.0077 0.2733 0.5078 13 32 54.44 100.00 88.41 100.00 

2009 -0.1020 -0.0073 0.3671 0.4766 8 39 51.24 100.00 99.34 100.00 

2012 -0.1487 -0.0375 0.3356 0.5391 11 23 97.63 100.00 99.58 100.00 

2014 -0.2577 -0.1794 0.3633 0.5391 21 45 99.98 100.00 99.99 100.00 

2017 -0.2384 -0.1990 0.3633 0.5352 26 36 99.98 100.00 99.99 100.00 
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Annual flood frequency maps 

 

AWPF maps of the selected years corresponding to 

OFS and FV frequency are shown in Figure 5. In the 

case of 2002, obtained results showed the maximum 

flooding extension (1398.84 km2), being specially 

noticed in the flooded vegetation category (802.21 

km2). This was also observed in Figure 4, where the 

FV of 2002 showed an important increase, 

especially during the autumn season. Moreover, FV 

areas were located primarily at the floodplains of 

rivers and streams placed at the alluvial plain, which 

suggests an overflow caused by soil water surplus 

generated in 2001, when soil water storage capacity 

reached its limit of absorption and storage capacity 

(Quiroz Londoño et al., 2013; Scarpati & Capriolo, 

2013). In the case of 2014, the OFS total extension 

(653.74 km2) was greater than the FV category 

(297.22 km2). In regards to the driest year of the 

selected time-lapse window (2009), water 

corresponded primarily to permanent shallow lakes 

(8.51 km2), and FV (13.48 km2) was linked to the 

OFS (58.18 km2) or some isolated croplands with a 

very low flooding frequency. Flooding extension 

areas of each category of annual AWPF maps are 

shown in Table 2. 

 

 
Figure 5: Flooding frequency in the QGRW obtained from Landsat imagery at the GEE platform for the selected years. 
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Table 2. Flooding extension of the OFS and FV categories obtained for the QGRW from AWPF maps shown in Figure 5. 

Year 

Flooding Surfaces(km2) Handled Landsat  Otsu's median 

Open Flood Surfaces Flooded Vegetation Images (#)  thresholds 

Very 
Low 

Mode- 
High 

Very Very 
Low 

Mode- 
High 

Very 
Used 

Ex 

cluded 
MNDWI NDVI 

Low rate High Low rate High 

2001 216.4 24.4 6.0 4.7 19.8 70.7 1.6 0.02 - - 94 10 0.0071 0.4610 

2002 439.5 71.4 38.0 16.5 31.2 732.7 62.7 5.1 0.92 0.70 75 6 -0.0708 0.2735 

2009 39.7 3.5 1.6 2.1 11.2 13.3 0.1 - 0.02 - 83 31 -0.0714 0.4141 

2012 217.3 82.5 46.5 10.1 16.7 238.4 19.0 0.8 0.04 - 62 5 -0.1327 0.4299 

2014 492.2 88.5 31.5 11.7 29.8 293.8 3.1 0.3 0.02 - 119 10 -0.2110 0.4414 

2017 359.2 84.4 52.0 32.4 17.1 256.8 7.2 0.7 0.1 0.03 106 18 -0.2304 0.4336 

 

Final flood frequency maps 

 

AWPF final maps corresponding to OFS and FV 

categories are shown in Figure 6. For the OFS 

category, all flooding frequencies were identified in 

the final map, reaching a total area of 1116.18 km2 

and corresponding mainly to wetlands and ponds. In 

the case of FV, flooded areas were identified with 

Very Low, Low and Moderate frequencies of 

flooding, reaching a total area of 1520.29 km2 

located mainly at the floodplains of rivers and 

streams. 

 

 
Figure 6: Final flood frequency maps obtained for the study area with the selected time-lapse collection. 

 

The combination of historical OFS and FV binary 

maps, classified by the relative flood frequency 

classes, is shown in Figure 7. According to the 

geomorphologic units of the QGRW, the alluvial 

plain showed the maximum flooding extension 

(941.41 km2), reaching the 27.22% of the floodplains 

of rivers and streams (Table 3). Here, the FV 

category generates the greatest flooding impact 

(71%), which is related to overflows of the 

surrounding vegetated areas, corresponding mainly to 

the Very Low frequency class. In the poor drainage 

alluvial plain, maximum flooding extension reaches 

440.3 km2, which represents the 17.40% of this 

geomorphologic unit, and it is more represented by 

the OFS category (55%), corresponding to 

subcircular ponds with sizes ranging from 0.014 to 

1.10 km2 and minor ephemeral streams, as observed 

by Teruggi et al. (2005). Similar results were 

obtained in the hills with shallow lakes, with a 

maximum flooding extension of 195.49 km2 (17.14% 

of the hills extension) and represented mainly by the 

OFS category (60%). Particularly in this area, the 
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Very High frequency class is better represented (9.88 

km2), since temporary water bodies related to the 

subsurface water flow emerge. In the case of the relic 

hills and perirange aeolian hillocks, maximum 

flooding extension was lower (92.11 km2 and 93.79 

km2), covering the 5.91% and the 4.45% of the total 

extension of the mentioned geomorphologic units, 

respectively. Finally, as expected, flooding in the 

ranges was almost negligible (7.98 km2, representing 

2.88% of the range system). 

 

 
Figure 7: Historical Flood Frequency Map conducted to determine flood prevention strategies in the region. 

 
Table 3. Flood extension of the historical flood frequency obtained for the geomorphologic units of the QGRW. 

Geomorphologic 

unit 

Area (km2) 
Area 

(%) 

Flooding 

representation 

Total 

area 

Not 

flooded 

Very 

Low 
Low Moderate High 

Very 

High 

TOTAL 

(Flooded) 
Flooded 

FV 

(%) 

OFS 

(%) 

Ranges 277 269.1 7.89 0.09 - - - 7.98 2.88 61 39 

Perirange aeolian 

hills 
2110 2016.19 86.94 3.8 2.09 0.85 0.11 93.79 4.45 52 48 

Relic hills 1557 1465.44 82.36 6.77 1.8 0.68 0.5 92.11 5.91 39 61 

Hills with shallow 

lakes 
1141 945.31 129.18 33.86 14.17 8.4 9.88 195.49 17.14 40 60 

Alluvial plain 3459 2517.41 879.65 45.16 9.23 4.55 2.82 941.41 27.22 71 29 

Poor drainage 

alluvial plain 
2531 2090.6 370.06 53.97 13.97 1.87 0.43 440.3 17.4 45 55 

TOTAL 11075 9304.05 1556.08 143.65 41.26 16.35 13.74 1771.08 15.99 51 49 
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Flood prevention strategies 

 

Farm flood prevention strategies can vary 

depending on specific circumstances and location. 

However, there are certain agricultural best 

management practices and measures that each 

single landowner and agricultural producer can 

implement for farm flood prevention (Antolini et 

al., 2020; European Commission - Directorate-

General for Environment, 2021; Warner et al., 

2017). Based on the results of the historical flood 

frequency mapping (Figures 6 and 7), several flood 

prevention measures were proposed for 

implementation in each flood frequency class 

(Table 4), encompassing both structural and non-

structural approaches. 

 
Table 4. Recommended strategies for farm flood prevention based on flood frequency classes. 

Flood prevention strategies 

Flood frequency classes 

Low-Very low flood 

frequency 

Moderate flood 

frequency 

High-Very high 

flood frequency 

1. Land Use Planning ** *** **** 

2. Drainage Management * *** **** 

3. Conservation practices  ** **** 

4. Buffer Zones  *** **** 

5. Erosion Control * *** **** 

6. Floodplain Management  *** **** 

7. Water Storage and Detention  ** **** 

8. Soil Management ** *** **** 

9. Communication and Education * ** **** 

10. Monitoring  ** *** **** 

11. Flood insurance * *** **** 
Very high (****), high (***), moderate (**), low (*), or insignificant (empty cell) indicate the recommended actions for flood prevention 

regarding each flood frequency class 

 

1. Land use planning: Proper land use 

planning is essential to minimize the risk of 

flooding on farms. Avoiding construction or 

farming activities in flood-prone areas can help 

prevent flood damage. Identify areas at higher 

elevations or well-drained soils for critical 

infrastructure and sensitive operations. 

 

2. Drainage management: Implementing 

effective drainage systems is crucial for both high 

and low flood frequency scenarios. Maintain and 

regularly inspect existing drainage ditches, channels, 

and culverts to ensure they are clear of debris and 

functioning properly. Consider installing additional 

drainage infrastructure if necessary. 

 

3. Conservation practices: Implement 

conservation practices that promote soil health and 

water infiltration. Practices like contour plowing, 

strip cropping, cover cropping and planting trees can 

help reduce surface runoff and improve soil 

structure, decreasing the risk of flooding. 

 

4. Buffer zone and wetland restoration: 

Establish buffer zones or riparian buffers along 

water bodies, such as rivers or streams, adjacent to 

the farm. These natural vegetated areas can help 

absorb excess water during floods, reduce erosion, 

and filter out sediment and pollutants. 

5. Erosion control: Implement erosion control 

measures to prevent soil erosion, which can worsen 

flooding. Methods such as terracing, grassed 

waterways, and retaining walls can help minimize 

erosion and keep soil in place. 

 

6. Floodplain management: If your farm is 

located in a floodplain, it's important to understand 

the flood risks and develop appropriate floodplain 

management strategies. This may include strategies 

like floodplain zoning, flood forecasting, early 

warning systems, and emergency response planning. 

 

7. Water storage and detention: Constructing 

on-farm water storage and detention structures, such 

as ponds or reservoirs, can help capture excess water 

during high flood events. These structures can also 

be used for irrigation during dry periods. 

 

8. Soil management: Maintaining healthy soils 

through practices like organic matter management 

and appropriate crop rotation can improve soil 

structure and water-holding capacity, reducing the 

impact of flooding. 

 

9. Communication and education: Promote 

awareness and education among farm owners, 

workers, and neighboring communities about flood 

risks and appropriate flood prevention measures. 
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Encourage collaboration with local authorities, 

extension services, and other stakeholders involved 

in water management. 

 

10. Monitoring networks (data and 

information): Effective monitoring is widely 

acknowledged as a critical component of prediction 

and prevention strategies. In particular, the 

establishment of stream/river gauges for continuous 

streamflow monitoring, systematic recording and 

analysis of precipitation patterns and regular 

monitoring of water table levels are of paramount 

importance. Additionally, the installation of on-farm 

weather stations can provide invaluable insights to 

farmers, enabling them to plan and prepare for 

extreme weather conditions and optimize their 

planting and harvesting schedules. 

 

11. Flood insurance: Can help farmers prepare 

for and recover from such disasters. 

 

 

DISCUSSION 

 

During the last years, the production of low-cost 

flood maps all around the globe has increased, since 

several satellite datasets were made available for free 

(Hawker et al., 2020; Mehmood et al., 2021). The 

analysis of long time series of multi-temporal 

satellite imagery, as applied in this study, proved to 

be useful information for generating flood maps. In 

this contribution, an evaluation tool to translate flood 

data into operational maps is provided, which allows 

visualizing the spatial dimension of potential floods 

and taking action to prevent and reduce their damage. 

 

The proposed method has several strengths: firstly, 

cloud-cover and shadow limitations in the 

performance of normalized difference indices have 

been overcome by including image pre-processing 

procedures (e.g., C Function of Mask algorithm, 

collection filtering). Secondly, the temporal 

continuity of reflectance between Landsat TM, 

ETM+, and OLI/TIRS sensors was undertaken by 

spectral harmonization following Roy et al. (2016), 

which allowed the analysis of long-time series of 

multiple sensors properly. Thirdly, the proposed 

identification of flooded areas created by the 

combination of spectral indices (i.e., MNDWI and 

NDVI) provided more accurate information related 

to the associated flooding events. In this sense, the 

NDVI proved to be a powerful tool to differentiate 

between open water surfaces and flooded vegetation 

previously detected as water by MNDWI, as the 

NDVI response during flood events is highly 

sensitive to inundation (Powell et al., 2014), and it is 

usually underestimated at flooding detection. 

Finally, the selection of a training area within the 

study area (i.e., watershed), where differences 

between water, land, and vegetation are exposed, 

was a key point to enhance the Otsu dynamic 

threshold selection of the utilized normalized 

difference indices for flood mapping of the QGRW.  

 

Delineation of water and monitoring of water body 

changes have been successfully performed by the 

computation of Normalized Difference Water 

Indices (NDWI) worldwide (Jain & Sinha, 2005; 

McFeeters, 1996; Rogers & Kearney, 2004; Sethre 

et al., 2005; Xu, 2006, among others). Particularly, 

the MNDWI proposed by Xu (2006) is the best 

option for delineating surface water in Landsat 

imagery, since it improves the separation of built-up 

features and vegetation (Campos et al., 2012; 

Mohammadi et al., 2017) from water. However, the 

threshold between water and non-water features is 

not a constant value; instead, it is a dynamic value 

that changes according to the subpixel land-cover 

components. Thus, for a given water fraction, the 

thresholds can be determined more efficiently by 

examining the histogram of the MNDWI image (Ji 

et al., 2009). In this sense, Otsu’s threshold selection 

method for gray-level histograms is appropriate 

since it is simple, nonparametric, unsupervised, and 

automatic (Otsu, 1979). For a better implementation 

of this method, a training area with clear differences 

between the targets of the study (i.e., water, non-

water) might be selected, and obtained thresholds 

can then be applied to the entire study area.  

 

In the case of NDVI, several studies use this index to 

detect water and flooding (Domenikiotis et al., 2003; 

Shrestha et al., 2017). Nonetheless, it remains a 

vegetation index that is strongly sensitive to the 

subpixel vegetation component, which makes it less 

suitable for delineating water unless the SWIR band 

is not available in the remote sensor (Ji et al., 2009). 

Concerning flood events, very low values of NDVI 

are expected when the soil/vegetation component is 

flooded. But this behavior is different in areas 

adapted to the flood pulse (Powell et al., 2014). In 

the proposed study area, the subpixel components of 

floodplains located at rivers and streams, in addition 

to wetland vegetated areas are highly responsive to 

NDVI during flooding pulses. Thus, a combination 

of MNDWI and NDVI can be used that assess not 

only the open water flooding but also the 

productivity response to flooding, according to the 
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vegetation response. This combination of indices has 

been already used by several authors for monitoring 

flooding areas (Azedou et al., 2022; Mehmood et al., 

2021; Solana et al., 2021b, among others). However, 

most of these studies focused on the detection of 

open water surfaces and disregarded the FV class, 

which can lead to an underestimation of the extent of 

inundation. The present work gives some advances 

in the detection and extraction not only of open 

flood surfaces but also of flooded areas underneath 

vegetation, allowing the creation of much more 

realistic scenarios of flooding.  

 

In the QGRW, differences between the spatial 

distribution and frequency of potential floods in both 

OFS and FV can be attributed to the watershed 

dynamics of this poorly drained landscape. 

Regarding OFS, the Moderate to Very High flood 

frequency categories were observed mainly in 

temporary water bodies. This was particularly 

evident in the hills with shallow lakes located at the 

southwestern limit of this plain river watershed, 

where Solana et al. (2021a) proposed a regional 

discharge area associated with the presence of a 

hydraulic barrier to the Pampean aquifer in-depth. 

Similar behavior was observed in the poorly drained 

alluvial plain, where the Very Low to Moderate 

frequency categories of both OFS and FV can be 

attributed to the groundwater rise. In this sense, it 

has been recently observed in the South American 

plains that initial deep groundwater levels do not 

recover because of the replacement of natural 

pastures and native vegetation by rainfed agriculture, 

which leads to flooding even under low rainfall 

scenarios (Houspanossian et al. 2023). Conversely, 

the Very Low flood frequency category of OFS also 

occurred in the main rivers, which may be related to 

important but isolated overflows. In the case of FV 

areas, the Very Low to Moderate categories were 

observed primarily in floodplains along rivers and 

streams, which can be related to the typical 

discharge behavior of these watercourses that flood 

along surrounding croplands. 

 

Flood mapping in other basins with similar 

geographical, climatological, and geomorphological 

features could apply the method followed in this 

study by adapting the algorithm and adjusting the 

thresholds for detecting floods in comparable areas, 

for future implementation of flood prevention 

strategies. By engaging in good planning and 

making strategic investments, private landowners 

and agricultural producers can proactively prevent 

flooding and safeguard their land interests and 

assets. While farmers cannot entirely prevent 

flooding, they can significantly reduce the potential 

damage and negative impacts on their agricultural 

operations by implementing these strategies and 

taking appropriate actions. It is crucial for farmers to 

assess their specific circumstances, local conditions, 

and flood risk profiles to determine the most 

appropriate combination of flood prevention 

measures for their farms. Additionally, staying 

updated with local regulations, guidelines, and best 

practices related to flood management is essential.  

 

 

CONCLUSIONS 

 

This study contributed to the generation of flood 

inundation extent and frequency maps along rivers 

in plain watershed basins, which is of particular 

importance for flood monitoring and assessment of 

these environments. By using the advantages offered 

by the GEE platform, the historical analysis of 

multi-temporal Landsat images was achieved 

without downloading and performing time and 

memory-system-intensive tasks. 

 

The proposed rainfall and multi-temporal flood 

analysis suggested a strong connection between 

flooded areas and the ruling climatic conditions of 

the QGRW, with increases in precipitation during 

the summer, and increases in flooded areas 

attributed to the decrease in evapotranspiration that 

arises during the winter. In the case of frequency 

analysis, the dominance of Very Low frequencies of 

flooding (AWPF < 20%) observed in both OFS and 

FV areas, highlighted the importance of flash flood 

events in the knowledge of areas potentially prone to 

flooding expected in plain watersheds. 

 

The differentiation of OFS and FV from non-flooded 

areas was achieved by the combination of MNDWI 

and NDVI, with the NDVI as a powerful tool to 

evaluate the vegetation response to flooding. Here, 

the application of the Otsu method to compute the 

dynamic segmentation of the normalized difference 

histograms was a key step to define the dynamic 

threshold values according to the fractional 

components of water, soil, and vegetation, instead of 

using constant values.  

 

Overall, this study provided valuable information for 

flood management and mitigation efforts in 

Argentina's agriculturally dominated river 

watersheds. Implementing these mapping techniques 

on a broader scale can contribute to more effective 
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preparedness, response, and recovery strategies for 

flood-prone regions in Argentina and beyond. 

 

 

DATA AVAILABILITY 

 

The codes developed in the current study are 

available in the Google Earth Engine platform: 

https://code.earthengine.google.com/b5645a358ff74f

7c0286624f4451e6d3 for multi-temporal flood 

analysis, and for annual flood frequency mapping: 

https://code.earthengine.google.com/79eff9484ce89e

f2bc402677d18284c1. 
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