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ABSTRACT 
 
In this paper we present several hydrological time series from Argentina that include, evapotranspiration, 
precipitation, and stream flow. We survey previous results and apply the 0-1 test for chaos to classify the 
sequences as regular or chaotic. Previous studies have shown evidence of chaos in several observables from 
hydrology using the traditional phase space reconstruction method and the computation of Lyapunov 
exponents. The 0-1 test for chaos can be used as a first step to identify the type of time series, that later can 
be subjected to the more detailed analysis of the phase space reconstruction. Assuming that the systems that 
generated these time series are deterministic, the 0-1 test for chaos classifies all of them as chaotic. 
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RESUMEN 
 
En este artículo presentamos varias series de tiempo hidrológicas de Argentina que incluyen, 
evapotranspiración, precipitación y caudales. Revisamos previos resultados y aplicamos el test 0-1 de caos 
para clasificar las secuencias como regulares o caóticas. Estudios previos han demostrado evidencia de caos 
en muchos fenómenos hidrológicos usando el método tradicional de la reconstrucción del espacio de fase y el 
cálculo de exponentes de Lyapunov. El test 0-1 de caos puede ser usado como un primer paso para identificar 
el tipo de serie de tiempo, y que luego puede ser sujeta al análisis más detallado de la reconstrucción del 
espacio de fase. Si asumimos que los sistemas que generaron estas series de tiempo son determinísticos, el 
test 0-1 de caos las clasifica a todas ellas como caóticas. 
 
Palabras clave: Hidrología, Series de tiempo, Test 0-1 de caos, Evapotranspiración, Precipitación. 
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INTRODUCTION 
 
The hydrologic cycle is a large feedback loop that 
determines the conditions of water on Earth globally 
and locally, and with strong interactions between 
different systems at different spatial and temporal 
scales. The natural phenomena involved in the water 
cycle are described by physical laws and 
mathematical models that can explain many aspects 
at the microscopic and macroscopic levels, and are, 
in general, represented by nonlinear systems. The 
water cycle gathers all kinds of materials, fluids, 
gases, and solids, as well as organic elements with 
specific characteristics and properties that change 
with time. On the one hand, there are several 
external factors that have a periodic nature and are 
present in these systems, like the ones related to the 
motion of the Earth around the Sun, the rotation of 
the Moon around the Earth, and the rotation of the 
Earth about its axis, among others. These 
phenomena are responsible for the annual, seasonal, 
and daily periodic variations found in several 
hydrological components. On the other hand, the 
atmospheric agents like temperature, winds, clouds, 
precipitation, and the local topography and 
vegetation of the basins imply that the variables, like 
precipitation or flow discharge, are affected by many 
other variables in an irregular manner. These 
conditions represent a challenge for the 
meteorologist as well as for the hydrologist when 
trying to determine the state of a part of the system 
during a specific period of time. The relationship 
between the different interconnected systems at 
different scales in space and time is not completely 
understood.  
 
Chaos theory gives a frame for the study of 
deterministic systems that present seemingly 
stochastic behavior and are unpredictable in the 
long-term. The three main ingredients of chaotic 
systems are, periodic behavior (regularity), 
sensitive dependence on initial conditions 
(unpredictability), and mixing (indecomposabiliy), 
see (Devaney, 2003). In the last few decades these 
properties were studied in several mathematical 
models, laboratory experiments and also natural 
phenomena, see for example, (Tsonis, 1992; 
Turcotte, 1997; Schreiber, 1999; Kantz and 
Schreiber, 2004; Sivakumar and Berndtsson, 2010; 
Tsonis, 2007; Skokos et al., 2016). 
 
Several techniques have been applied to the study of 
hydrological time series with many different 
outcomes. Some researchers consider that the time 

series that correspond to some of these hydrological 
variables may be better understood when interpreted 
as generated by stochastic processes, and many 
times the predictions of stochastic models are in 
good agreement with the observed phenomena. For a 
discussion of some aspects of these interpretations 
see (Koutsoyiannis, 2006). Others instead, take a 
deterministic approach, and in some cases their 
predictions in the short term may be more accurate 
than the ones obtained with stochastic models. In 
2017, Professor Sivakumar published the first book 
about chaos in hydrology (Sivakumar, 2017), where 
the different approaches are described, and the 
chaotic approach selected from a pragmatic point of 
view, with the interpretation that chaos theory can 
bridge the gap between stochasticity and 
determinism. The book is full of excellent ideas and 
applications, and shows the results of experiments 
that many researchers around the world have 
obtained in the study of hydrological variables. 
Some of the methods discussed in Sivakumar (2017) 
involve the phase space reconstruction, the 
computation of the correlation integral, the 
computation of Lyapunov exponents, and the study 
of return maps. The method of phase space 
reconstruction has been applied to several 
hydrological phenomena in the past few decades, see 
for example (Sivakumar, 2017; Pasternack, 1999; 
Sivakumar, 2000a; Sivakumar, 2002b; Sivakumar- 
Jayawardena, 2002; Sivakumar and Jayawardena, 
2002; Sivakumar, 2004; Sivakumar and Berndtsson, 
2005) and references therein. 
 
In 2004, Gottwald and Melbourne (2004) developed 
a method to differentiate deterministic periodic or 
quasi-periodic time series from chaotic ones, using 
the 0-1 test for chaos. In this test, we compute a 
parameter K that gives a value close to 0, if the 
behavior of the system is regular, and a value close 
to 1, if the behavior is chaotic. The 0-1 test for chaos 
is based on sophisticated mathematics that relate 
group extensions and dynamics. The test was 
improved in the following years and has been 
applied to mathematical systems, laboratory 
measurements and also natural observables, see 
(Gottwald and Melbourne, 2005; Falconer et al., 
2007; Gottwald and Melbourne, 2009a; Gottwald 
and Melbourne, 2009b; Gottwald and Melbourne, 
2016). For a pedagogical overview of the 
mathematics behind the test see (Bernardini and 
Litak, 2016). In some cases, the test has also been 
shown to perform better than the traditional methods 
using phase space reconstruction and Lyapunov 
exponents, when the time series is contaminated 
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with noise, see (Gottwald and Melbourne, 2016). 
Applications of the 0-1 test in physics, finance, and 
oceanography can be found in (Lugo-Fernandez, 
2007; Litak et al., 2009a; Litak et al., 2009b; Krese 
and Goverkar, 2012; Chowdhury et al., 2012; 
Zachilas and Psarianos, 2012; Xin and Li, 2013; 
Prabin Devi et al., 2013; Krese and Govekar, 2013; 
Kriz and Kratochvil, 2014; Kriz, 2014). In 
particular, we found two applications to 
hydrological variables related to river flows and 
runoff time series in (Li et al., 2014; Kedra, 2014). 
Kedra (2014) used the 0-1 test and the phase space 
reconstruction approach. 
 
The more traditional method of deciding if a time 
series is chaotic by reconstructing the phase space, 
finding the correlation dimension, and measuring 
Lyapunov exponents is very demanding in terms of 
computing. Each of the several steps necessary to 
obtain the information requires large computations 
and specific considerations that need careful 
analysis. On the other hand, the phase space 
reconstruction approach gives a more detailed 
description of the system like, for example, the 
minimum number of variables necessary to describe 
the behavior of the system in phase space. Then, the 
variables may be used to create a model of the 
system, and perform short term forecasts. 
 
The 0-1 test has the advantage of being easy to 
program and work with, and takes short computation 
time. The test works directly with the time series and 
the classification is independent of the dimension of 
the underlying dynamical system under 
investigation, as well as, independent of the system 
being continuous (differential equations) or discrete 
(maps). This is a major difference with respect to the 
phase space reconstruction approach where the time 
series is considered the sample of a continuous 
variable, and where the dimension of the appropriate 
phase space of the system has to be determined in 
order to obtain the Lyapunov exponents to classify 
the system as chaotic.  
 
As with any other test, it is necessary to use caution 
when applying it. Some of the problems that may 
arise due to oversampling continuous dynamical 
systems are discussed in (Melosik and Marszalek, 
2016). We remark that the 0-1 test for chaos works 
assuming that the time series was generated by a 
deterministic system, and it is not relevant to test 
sequences generated with stochastic systems, see for 
example (Hu et al., 2005; Gottwald and Melbourne, 
2008) for a discussion about this issue. 

Methods to evaluate the evidence of chaos from a 
time series also require that the time series is 
sufficiently long to capture all aspects of the 
dynamics. It is not possible to assert if a natural time 
series of finite length has this property. For time 
series that may be too short to allow for convergence 
of K to either 0 or 1, strong indications for the 
behavior (regular or chaotic) can be found by 
looking at the values of K as a function of the length 
of the time series. 
 
The application of any technique to analyze, 
describe, and ultimately perform forecasts depend on 
the characteristics of the system under study. If the 
system is considered stochastic, then several 
techniques are available for its study. When the 
system is considered deterministic and does not 
show signs of chaotic behavior, the analysis, 
description, and forecast (in the short and long term) 
are performed through modeling using differential 
equations. Finally, when the system is considered 
deterministic and shows signs of chaotic behavior, 
the study is of a different nature. Long term forecast 
is not available in these types of systems. The goal is 
to use the time series to reconstruct a chaotic 
attractor in phase space, which can provide a 
numerical model for the dynamics of the system and 
can be used for short term forecast, as seen, for 
example, in (Kedra, 2014). The reconstruction of the 
attractor is a long and difficult process that may take 
several months or years to perform, even when a 
long time series is available. Therefore, it is of great 
advantage to have a test, like the one described in 
these notes, to first classify the system as chaotic 
before considering such a demanding task.    
 
In this paper we analyze several hydrological time 
series from Argentina that include 
evapotranspiration, precipitation, and stream flow. 
We anticipate that all of these time series are 
classified as chaotic by the 0-1 test. The method 
provides the hydrologist with a first tool for the 
identification of chaotic behavior that later can be 
refined through the use of more detailed and 
elaborate approaches, like for example, the phase-
space reconstruction method, the computation of 
Lyapunov exponents, the analysis of return maps, 
and others. 
 
In order to illustrate the method and compare the 
results, we apply the test to time series derived from 
the Lorenz system and the quadratic map. See 
Figures 1 and 2. These systems have been widely 
studied numerically and theoretically, and their main 
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properties are well known, see for example, 
(Devaney-2003, Lorenz-1963). For the quadratic 
map we show one regular and one chaotic orbit. 
 
 
DATA AND METHODS 
 
Lorenz’s system.  
 
The Lorenz system (Lorenz, 1963) is a simplified 
model for the phenomenon of convection in fluid 
dynamics. It is a continuous system of three ordinary 
differential equations with three parameters given by 
 

xybzz

xzyrxy

xyx










 )(
 (1) 

 

where the dot denotes the time derivative of the 
variable with respect to time. The typical trajectories 
that are solutions of the Lorenz system are bounded 
and converge to a strange attractor in phase space. 
The solutions behave in a non-periodic fashion and 
the system shows sensitive dependence on initial 
conditions, that is, the system presents chaotic 
dynamics for certain values of the parameters. In 
particular, we use the classical values σ=10, r=28 
and b=8/3. We consider the Lorenz system as a 

prototypical example of a continuous chaotic 
dynamical system with a strange attractor. Figure 1 
shows the time series of the x variable and the 
trajectory of a solution in phase space. 
 
The quadratic map 
 
The quadratic family of functions f(x)=x2+µ with 
parameter µ, regarded as a map of the form 
xn+1=xn

2+ µ, is a feedback system that presents 
chaotic behavior for some values of the parameter 
µ. It is one of the simplest nonlinear differentiable 
maps in one dimension, and we use it as a 
prototype of a discrete chaotic dynamical system, 
as well as, to test for a regular orbit.  
 
Figure 2 shows two time series corresponding to 
regular and chaotic behavior, and the orbit 
diagram. The orbit diagram shows the long term 
behavior of a typical orbit, and the period-
doubling bifurcation route to chaotic behavior 
characteristic of this type of map (Devaney, 
2003). We can see that the value of µ =-1.3 
corresponds to an attracting limiting cycle of 
period 4, and that a value of µ =-2 corresponds to 
chaotic behavior. Since theoretical results are well 
known for the quadratic map, we use the 0-1 test 
on these two sequences for illustration and 
comparison to the behavior of the other variables. 

 
Figure 1. On the left, we see a trajectory of the Lorenz system in phase space, see equation (1). Orbits are attracted to a strange 

attractor, and go around two rotational centers in a non-periodic fashion. On the right, we see a chaotic time series 
corresponding to the variable x, for 3000 uniformly sampled points from a trajectory computed using the Runge-Kutta method 

of order 4 with step size 0.0001. 
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Figure 2. The quadratic family xn+1=xn

2+µ presents different dynamical behavior for different values of the parameter µ. On the 
left, we see the time series of a typical orbit for µ=-1.3 (top), and µ =-2 (bottom). On the right, we see the orbit diagram for the 

quadratic family in the interval -2≤ µ≤ 0.25, where we see the long term behavior of typical bounded orbits. The vertical section 
of the diagram at µ =-1.3 shows a period-4 cycle, that corresponds to regular periodic behavior, and at µ =-2 shows chaotic 

behavior. 
 
Hydrological data  
 
The hydrological time series of evapotranspiration, 
precipitation, and stream flow analyzed in this paper 
come from the Azul and Tandil regions in the central 
eastern part of Argentina. See Figure 3. 
 
The upper creek basin of Del Azul has an area of 
1024 km2, see (Guevara Ochoa et al., 2018), and the 
altitude of the basin varies between 367 and 129m. 
The highest part is located in the SE, in the Tandilia 

system and presents slopes larger than 6%, see 
(Poire and Spalletti, 2005). Towards the NW the 
basin lies in a lowland region where the slopes are 
smaller than 1%, see (Guevara Ochoa et al.,2019).  
 
Figure 4 shows the hydrological time series of 
evapotranspiration, precipitation, and stream flows 
studied in this work. Table 1 presents some basic 
statistics of the distribution of values for the 
sequences including mean, standard deviation, 
median, skewness and kurtosis. 

 
Figure 3. The picture shows, from left to right, the location of Argentina in South America, the location of the province of 

Buenos Aires in Argentina, and the location of Azul and Tandil areas in the province of Buenos Aires, where the hydrological 
variables have been measured. 
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Figure 4. The time series studied in this work including evapotranspiration (ET0), precipitation (P), and stream flows (A2, A4, 
A5, and A9). In these plots the horizontal axis corresponds to time in units of days. 

 
Table 1. Basic statistical information about the time series considered in this work. Notice the large skewness characteristic of 

precipitation and flow time series. 
Time series Length Mean Std. Dev. Median Skewness Kurtosis 

Lorenz system 3000 -0.67 7.89 -0.98 0.15 2.35 

Quadratic map with  µ = -2 3000 0.00 1.41 0.02 0.00 1.50 

Quadratic map with  µ = -1.3 3000 -0.51 0.73 -0.62 0.08 1.14 

Evapotranspiration 4018 2.67 1.62 2.33 0.51 2.20 

Precipitation 3164 2.46 8.36 0.00 5.20 35.98 

Stream flow A2 751 2.60 2.80 1.89 6.48 60.36 

Stream flow A4 556 2.76 5.33 1.44 6.55 56.74 

Stream flow A5 551 1.83 1.73 1.47 5.85 48.71 

Stream flow A9 756 5.92 11.98 3.20 7.55 75.32 
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Evapotranspiration 
Evapotranspiration is the hydrological variable of 
greatest relevance in the subhumid-humid Pampas, 
where about 85% of the water that precipitates is lost 
through this process, see (Weinzettel and Usunoff, 
2001; Rivas et al., 2002). The estimation of the 
potential evapotranspiration in this area is essential, 
since the primary productivity is directly linked to 
water availability, see (Degano et al., 2018). The 
land use in the Azul basin is mainly rural 
agricultural and pastures. The highest temperatures 
occur during the period from December to March 
(summer) with a monthly average of 20°C, and the 
lowest temperatures occur during the period from 
June to August with a monthly average of 8°C.  
 
A time series of evapotranspiration from the Tandil 
region is shown in Figure 4 (top left). We can see a 
seemingly periodic signal, but the peaks and valleys 
are not exactly distributed periodically in time and 
have different magnitudes.  
 
Evapotranspiration from a vegetated surface depends 
on meteorological parameters, crop factors and 
environmental conditions. The process is connected 
to the available energy, whose main source is the 
direct solar radiation, and to environmental 
parameters such as air temperature. The driving 
force of this process is the difference in pressure 
between the water vapor on the evaporating surface 
and the water vapor in the surrounding atmosphere, 
see (Allen et al. 1998). 
 
The Oficina de Riesgo Agropecuario (Agricultural 
Risk Office) calculates the Reference 
Evapotranspiration ET0 with the FAO (Food and 
Agricultural Organization) Penman-Monteith 
Equation, (Allen et al., 1998), see equation (2). The 
ET0 is calculated with in situ biophysical variables 
provided by the Sistema Meteorológico Nacional of 
Argentina (SMN), measured at Tandil station (n° 
87645), and the data was subjected to the 
corresponding consistency analysis. A hypothetical 
reference crop with an assumed crop height of 0.12 
m, a fixed surface resistance of 70 s/m, and an 
albedo of 0.23 were used. ET0 is reference 
evapotranspiration in [mm/day], and it is given by 
 

)234.01(

)(2)273/(900)(408.0
0








 aeseTGnR

ET  (2) 

 

where Rn is the net radiation at the crop surface 
[MJ  m-2 day-1], G is the soil heat flux density [MJ 

m-2 day-1], T is the mean daily air temperature at 
2m height [°C], µ2 is the wind speed at 2m height 
[m s-1], es is the saturation vapor pressure [kPa], 
ea is the actual vapor pressure [kPa], the 
difference es-ea is the saturation vapor pressure 
deficit [kPa], ∆ is the slope of the vapor pressure 
curve [kPa °C-1], γ is the psychrometric constant 
[kPa °C-1], 0.408 is a conversion factor to 
mm/day, 900 is a coefficient for the reference 
crop [kJ-1 Kg K day-1], 273 is a conversion factor 
to express the temperature in Kelvin degrees, and 
0.34 is a coefficient resulting from assuming a 
crop resistance of 70 s/m and an aerodynamic 
drag of 208/µ2 for the reference crop [s/m]. 
 
The study of Wang et al. (Wang et al., 2014) seems 
to have been the first one to address evidence of 
chaos in an evapotranspiration time series. They 
applied the reconstruction method and conducted 
successful short term forecast experiments using 
local approximations obtained based on chaos 
theory.  
 
Precipitation 
For this study we counted with the pluviometric 
information from the Azul hydrometeorological 
station of the SMN. According to the SMN, the 
mean annual precipitation is 902 mm. March is the 
rainy month with an average precipitation of 
120mm, and the months of June and July are the 
driest with an average of 45mm.  
 
A time series of precipitation is shown in Figure 4 
(top right). The sequence corresponds to a period of 
more than 8 years of measurements. The picture 
shows values of the daily precipitation in millimeters 
from a meteorological station in the Azul basin.  
 
The precipitation time series are currently being 
used to reinforce the early alert system of floods in 
the city of Azul, see (Cazenave and Vives, 2014), 
and have been evaluated for several 
hydrometeorological studies like, for example, 
(Venere et al., 2004; Guevara Ochoa et al., 2017). 
More information about the Azul region can be 
found in (Barrucand et al., 2007). 
 
Several studies of precipitation time series from the 
point of view of chaos theory are reviewed in 
(Sivakumar, 2017). Precipitation time series are 
often considered as the result of a stochastic 
process. However, this seemingly random behavior 
may be due to the response of a deterministic 
chaotic system. 
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Stream flow 
We consider four time series of daily Azul stream 
flows [m3/s] denoted by A2 (751), A4 (556), A5 (551), 
and A9 (756), see Figure 4 and Table 1. Stream flow 
time series show complex behavior with a seemingly 
periodic base flow and peaks that corresponds to floods 
from irregularly distributed precipitation events. The 
number of variables that participate in the generation of 
these time series is large, but it has been found that in 
some cases, there are only a few generalized variables 
that may be able to model the behavior of the system. 
The study of Kedra (2014) is an excellent example of a 
successful application of the chaotic approach in a 
study of river flow. For a review of several studies of 
river flow using chaos theory see (Sivakumar-2017). 
 
 
THE 0-1 TEST FOR CHAOS 
 
The 0-1 test receives as input a one-dimensional time 
series xn for n = 1, 2, ..., N. The data is used to drive a 
two-dimensional system with components given by  
 

)sin(1

)cos(1

cnnxnqnq

cnnxnpnp




 (3) 

 

where c ϵ (0,2π) is a fixed constant. These new 
sequences, given by pn and qn, represent the Euclidean 
extensions of the system to include symmetries under 
rotations and translations, see (Bernardini and Litak, 
2016). We are interested in the growth rate of the mean 
squared displacement of the trajectory (pn, qn) as a 
random walk in the plane. The starting point for the 
walk is set to the origin, so that p1=q1=0. The time-
average mean squared displacement Mc(n) is given by 
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and its growth rate is defined by 
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The limits Mc(n) and Kc can be shown to exist under 
general conditions, and Kc takes either the value Kc =0 
signifying regular dynamics, or the value Kc =1 
signifying chaotic dynamics. This is justified for large 
classes of dynamical systems, see (Gottwald and 
Melbourne, 2016) and references therein. In the regular 
case (periodic or quasiperiodic dynamics) the 
trajectories for the system given by equation (3) are 
typically bounded, whereas in the chaotic case the 
trajectories typically behave like a two-dimensional 

Brownian motion with zero drift and hence evolve 
diffusively. The diffusive or bounded nature of the 
trajectories can be seen in a plot of the walk (pn, qn). A 
convenient method for distinguishing these growth 
rates, bounded or diffusive, is by means of the mean 
square displacement Mc(n) which accordingly is either 
bounded or grows linearly. The diagnostic parameter 
Kc captures this growth rate. 
 
The values of Mc(n) present oscillations that sometimes 
make the analysis more difficult, and therefore it is 
convenient to adjust them before estimating the growth 
rate. The oscillations are computed with the following 
formula, 
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Then, the average displacement is changed from Mc(n) 
to Dc(n)= Mc(n)- Vc(n). When the oscillations are 
removed it is possible for this quantity to become 
negative. Then, to further set the estimator we add the 
term a min Dc(n) with a>1, so that the new estimator is 
now denoted by Dc

*(n)= Dc(n)+a min Dc(n). The value 
of a=1.1 is used in (Gottwald and Melbourne, 2016), as 
in this work.  
 
There are several methods to measure the growth rate. 
The correlation method presents some advantages that 
have been reviewed recently in (Gottwald and 
Melbourne-2016), and is the one used in this work. In 
order to estimate the growth rate, we compute the 
correlation between the vectors ξ = {1, 2, 3, ..., N}, and 
D = {Dc

*(1), Dc
*(2), Dc

*(3), ..., Dc
*(N)} using the 

definition,  
 

)var()var(

),cov(
),(*

D

D
DCorrKc 

  ,  

 

where cov and var stand for covariance and variance, 
respectively. The quantity Kc

* measures the level or 
strength of the correlation of D with a linear growth.  
 
The final diagnostic parameter that provides the output 
of the test is the number K given by 
 

)( *
cKmedianK   (5) 

 

where Kc
* is computed for 100 values of c chosen at 

random in the interval (π/5, 4π/5). This reduced interval 
of values of c is used to avoid resonances that can 
mislead the interpretation of the results. If K≈0 then the 
time series is classified as regular (periodic or quasi-
periodic), and if K≈1 then the time series is classified as 
chaotic. In practice, the estimated parameter K is found 
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for values of n<<N, and (Gottwald and Melbourne, 
2016) recommends the use of N/10, as we do here.  
 
Finally, it is convenient to plot the values of K as a 
function of the length of the series in order to see if 
there are trends, especially when it is not completely 
clear if the time series under analysis may be long 

enough to capture the full spectrum of the system 
dynamics.  
 
In order to illustrate the application of the test and 
compare the results, we applied the test to known 
chaotic and regular time series from the Lorenz system 
and the quadratic map. See Figures 5 and 6.  

 
Figure 5. The 0-1 test applied to the time series of the variable x of the Lorenz system for the trajectory in Figure 1. On the left, 

we present a sample of the random walk of the variables pn and qn, given by equation (3), showing diffusive behavior. On the 
right, we see the parameter K given by equation (4), as a function of the length N of the time series, converging to a value of 1, 

and indicating chaotic motion. 
 

 
Figure 6. The 0-1 test for chaos applied to two time series from the quadratic map xn+1=xn+µ. At the top left, we see the random 

walk in the pq-plane for the case with µ =-1.3. The random walk is bounded. At the top right, we show the parameter K as a 
function of the length of the sequence, showing convergence to 0. The test classifies this sequence as regular, as expected. At the 

bottom left, we present the pq-plane showing a diffusive walk for the case µ =-2, and on the right, we see the parameter K 
converging to 1, as we increase the length of the sequence. The test correctly classifies this sequence as chaotic. 
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RESULTS 

In this section we present the result of the 0-1 test for 
chaos, show examples of the behavior of the two 
dimensional walk given by the orbits of (pn, qn), and 
compute the value of K as a function of the length of the 
sequence, for the hydrological time series of Figure 4. 

The values of K for each one of the time series is 
presented in Table 2, and except for the regular time 
series that corresponds to the periodic orbit of the 
quadratic function, the values of K all lie above 0.99. 
This means that the 0-1 test for chaos classifies the 
time series as chaotic. 

 
Table 2. The results of the 0-1 test on the sequences studied in this work. The values of K in the table correspond to the median of 

Kc
* for 100 values of c selected at random in the interval (π/5, 4π/5), see equation (5). 

Time series K 

Lorenz system 0.998 

Quadratic map with  µ = -2 0.998 

Quadratic map with  µ = -1.3 -0.006 

Evapotranspiration 0.998 

Precipitation 0.997 

Stream flow A2 0.992 

Stream flow A4 0.998 

Stream flow A5 0.998 

Stream flow A9 0.995 

 
Figure 7 shows the result of the test for the time 
series of evapotranspiration, precipitation and 
stream flow studied in this work. The sample plots 
of an orbit of (pn, qn) present diffusive behavior. 
Moreover, in all cases, the curve of K as a function 
of the length of the time series shows convergence 
of K to 1. Even for the short time series of stream 
flow it is possible to see a clear trend in the 
behavior of K towards 1. We present the results for 
the sequence A9 that is representative of the 
behavior of the four stream flow time series. 
 
 
DISCUSSION 
 
We have presented the results of the application of 
the 0-1 test to several time series. For the Lorenz 
system and the quadratic map, the test is able to 
distinguish regular from chaotic behavior. For the 
hydrological time series of evapotranspiration, 
precipitation, and stream flow from Argentina, the 
test classified all the time series as chaotic. This 
implies that if we assume that these time series 
were generated by deterministic systems, then these 
systems behave chaotically. The question in the 
title refers to the possibility that this result applies 
to other hydrological observables. We also notice 
that with sequences of more than 500 points it is 
enough to have a clear idea of the convergence of 
the values of K.  

We presented the Lorenz system as a prototype of 
continuous deterministic chaotic dynamics, and the 
quadratic equation as a prototype of discrete 
deterministic chaotic dynamics. We may ask if any of 
the systems analyzed in this work may classified in one 
of these two types or their several variants, i.e., is there 
a deterministic low dimensional nonlinear system of 
differential equations, like the Lorenz system, that can 
provide an accurate description of the dynamics? Is 
there a deterministic nonlinear discrete system, like the 
quadratic map, that could provide a good model for the 
description of the behavior of these variables? We can 
also ask if a stochastic approach would be more 
appropriate for some of them, and if other approaches 
need to be developed to understand them.  
 
Nature seems to defy all kinds of approaches, 
stochastic, deterministic and chaotic. These different 
approaches are applied with the goal of obtaining 
information about different aspects of nature. However, 
due to the nonlinear nature of the phenomena that 
interact at a wide range of spatio-temporal scales, the 
behavior of the observables is not necessarily well 
represented by a superposition principle, where the sum 
of these characteristics gives as a result the behavior 
that we measure. Natural time series are the result of 
dynamical systems that may contain at the same time 
all these characteristics that we can, sometimes, get to 
see reflected on the results we obtain with our limited 
knowledge and tools.  
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Figure 7. The result of applying the 0-1 test to time series of evapotranspiration (top), precipitation (center), and stream flow A9 

(bottom). On the left, we present the random walk in the pq-plane showing diffusive behavior. On the right, we present the 
graphs of the parameter K as a function of the length of the time series. All sequences show convergence of K towards 1. 

 
We stress the point suggested by the results of this 
paper: if we assume that the systems under study are 
deterministic (which not every researcher is 
comfortable considering as a fact), the test performed 
in this work classifies them as chaotic. This, in turn, 
implies the necessity to intensifying the study of 
chaotic techniques to better understand these systems in 
order to perform effective short term forecasts, since 
long term forecasts would not be possible. On the other 
hand, the historical problem of the availability of 
complete and long accurate observations is one of the 

main reasons that these types of study are so difficult to 
perform and apply.  
 
The final answer to these types of questions remains 
still open, and may be considered one of the most 
difficult and exciting areas of research in contemporary 
science. Therefore, we hope that this paper provides an 
example, raises awareness, and underlines the use of 
some of the tools that are being developed and explored 
for a better understanding of the behavior of natural 
phenomena.  
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The results in this paper support the idea that finding 
evidence of chaos and performing a more detailed 
study of these variables may be helpful in the 
understanding of the dynamics of several hydrological 
variables, and that a first classification can be made 
using the 0-1 test for chaos. The study of other methods 
including the phase space reconstruction approach, the 
possible modeling of the system with local 
approximations, and the application of stochastic 
methods are left for future work. 
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